• Title/Summary/Keyword: of Hydration Heat

Search Result 713, Processing Time 0.026 seconds

Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Lee, Jae Nam;Kim, Byoung Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.531-541
    • /
    • 2009
  • The research analyzes and investigates conventional concrete, hydration heat, set, and mechanical properties by making high flowing self-compacting concretes of binary blend and ternary blend as one of evaluations about the properties of the hydration heat of high flowing self-compacting concrete with a strength of 30, 50, and 70 MPa. In addition, it estimates concrete adiabatic temperatures by calculating a thermal property value of powder obtained by measuring a heat evolution amount for powder used in concrete, a thermal property value of concrete obtained by conducting a simple adiabatic temperature test, and a normal thermal property value of material used in concrete, using a simple equation. Moreover, it analyzes and investigates the hydration heat property of high flowing self-compacting concrete and the thermal stress caused by hydration heat by conducting a 3D temperature stress analysis for the hydration heat and the adiabatic temperature obtained by temperature analysis, using MIDAS CIVIL 06 program.

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

Hydration Heat Analysis of Mass Concrete Replacement of Low Heat Binder and CGS with Fine Aggregate (저발열 결합재 및 CGS를 잔골재로 치환한 매스콘크리트의 수화열 해석)

  • Han, Jun-Hui;Lim, Gun-Su;Chi, Il-Kyeung;Yoon, Chee-Whan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.235-236
    • /
    • 2021
  • This study evaluated temperature distribution through adiabatic temperature rising test and hydration heat Analysis as a performance verification to utilize CGS as a hydration heat reduction material for mass concrete when replacing it with fine aggregate. According to the analysis, the temperature difference between the center and the surface was the highest at about 30℃, followed by the CGS 50% at 26℃ and the low heat combiner FA 30% at 23℃.

  • PDF

Reaction Characteristics of Geopolymer Paste Incorporating Fly-ash and GGBS (플라이애쉬와 고로슬래그 미분말을 혼입한 지오폴리머 페이스트의 반응특성 분석)

  • Shin, Ki-Su;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.321-330
    • /
    • 2020
  • The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. In previous studies, it has been found that the addition of LF to reduce the cementitious paste volume would substantially increase the compressive strength, and reduce the heat generation. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

Influence of Limestone Powder on the Hydration of Cement Contained much Chloride (석회석 미분말이 염소고함유시멘트의 수화반응에 미치는 영향)

  • Jeong, Chan-Il;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.537-543
    • /
    • 2006
  • Length change, hydration heat, setting time and compressive strength of OPC were measured by adding KCl and replacing limestone powder so as to examine the influence of limestone powder on hydration of the OPC contained much chloride. In general, the chloride modified cement was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the sudden hydration in its initial stage. As a result of the experiment, it has been demonstrated that heat of hydration, became low as one replaced limestone powder to the chloride modified cement, and the fluidity and shrinkage rate of mortar decreased without change in setting time; furthermore, the compressive strength at 28 days was improved.

Hydration Heat and Crack-Reducing Properties of Cement Mortar Added Fluosilicate Salt Based Hydration Heat Reducer (규불화염계 수화열 저감제가 첨가된 시멘트 모르타르의 수화열 변화 및 균열저감 특성)

  • Kim, Jin-Yong;Lee, Hyo-Song;Rhee, Young-Woo;Kim, Do-Su;Lee, Byoung-Ky;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.198-204
    • /
    • 2005
  • Fluosilicate salts based hydration heat reducer(SWP-HR), used in this study, is composed of fluosilicate salts, soluble silica, aromatic polymer condensate and nitrate salt based inorganic compound with latent heat property. Effects of SWP-HR addition on the hydration heat and anti-crack property of cement mortar were investigated. Adiabatic hydration temperature and drying shrinkage length of SWP-HR added cement mortar had a tendency to decrease compared to those of cement mortar without SWP-HR addition. Also, it was confirmed through crack pattern experiment of plate-form specimen for elucidating crack-reducing characteristic that anti-crack property of SWP-HR added cement mortar was improved.

Hydartion Heat Control with Closed Loop Pipe Cooling System (냉각수 순환 형태의 파이프 쿨링 공법을 이용한 매스콘크리트 수화열 제어)

  • 박찬규;손상현;이승훈;장기욱;정재홍;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.403-408
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. However, open pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance result of hydration heat control with closed loop pipe cooling system.

  • PDF