Browse > Article
http://dx.doi.org/10.5345/JKIBC.2020.20.4.321

Reaction Characteristics of Geopolymer Paste Incorporating Fly-ash and GGBS  

Shin, Ki-Su (Department of Architectural Engineering, Kangwon University)
Park, Ki-Bong (Department of Architectural Engineering, Kangwon University)
Publication Information
Journal of the Korea Institute of Building Construction / v.20, no.4, 2020 , pp. 321-330 More about this Journal
Abstract
The addition of a limestone filler(LF) to fill into the voids between cement and aggregate particles can reduce the cementitious paste volume. In previous studies, it has been found that the addition of LF to reduce the cementitious paste volume would substantially increase the compressive strength, and reduce the heat generation. This paper aim to evaluate the influence of LF contents on the hydration kinetics and compressive strength. Hydration kinetics were evaluate using heat of hydration, ignition loss and thermal analysis. The heat of hydration was measured using Isothermal Calorimetry. The degree of hydration was measured using ignition loss. Hydration product analysis was carried out by Thermal Gravimetric and Differential Thermal Analysis. The results show that the addition of LF reduces not only the initial setting time and heat of hydration peak, also degree of hydration and rate of strength development at early age increase with the addition of LF. It can be concluded the LF fills the pore between cement particles due to formation of carboaluminate, which may accelerate the setting of cement pastes.
Keywords
geopolymer; $%Na_2O$; $M_s$; hydration heat; length change; microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tennakoon, C.K. Assessment of properties of ambient cured geopolymer concrete for construction applications [doctor's thesis]. [Melbourne (Australia)]: Swinburne University, 2016. 256 p.
2 Swamy RN. Cement replacement materials. United Kingdom: Blackie Academic & Professional; 1986. 259 p.
3 Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials. 2008 Jul;22(7):1308-14. https://doi.org/10.1016/j.conbuildmat.2007.10.015
4 Marjanovic N, Komljenovic M, Bascarevic Z, Nikolic, V, Petrovic R. Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends. Ceramic International. 2015 Jan;41(1):1421-35. https://doi.org/10.1016/j.ceramint.2014.09.075   DOI
5 Hardjito D, Wallahm SE, Sumajouwm DM, Ranganm BV. On the development of fly ash based geopolymer concrete. ACI Materials Journal. 2004 Dec;101(6):467-72.
6 Karakoc MB, Turkmen I, Maras M, Kantarci F, Demirboga R, Toprak MU. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Construction and Building Materials. 2014 Dec;72:283-92. https://doi.org/10.1016/j.conbuildmat.2014.09.021   DOI
7 Silva PD. Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research. 2007 Apr;37(4):512-8. https://doi.org/10.1016/j.cemconres.2007.01.003   DOI
8 Siyal AA, Azizli KA, Man Z, Ullah H. Effects of parameters on the setting time of fly ash based geopolymers using taguchi method. Procedia Engineering. 2016;148:302-7. https://doi.org/10.1016/j.proeng.2016.06.624   DOI
9 Jaarsveld JGSV, Deventer JSJV, Lorenzen L. The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Minerals Engineering. 1997 Jul;10(7):659-69. https://doi.org/10.1016/S0892-6875(97)00046-0   DOI
10 Lee WKW, Van Deventer JSJ. Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements. Cement and Concrete Research. 2007 Jun;37(6):844-55. https://doi.org/10.1016/j.cemconres.2007.03.012   DOI
11 Lee BK, Kim GG, Kim RH, Cho BS, Lee SJ, Chon CM. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Construction and Building Materials. 2017 Oct;151:512-9. https://doi.org/10.1016/j.conbuildmat.2017.06.078   DOI
12 Yunsheng Z, Wei S, Zongjin L, Xiangming Z, Eddie Chungkong C. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Construction and Building Materials. 2008 Mar;22(3):370-83. https://doi.org/10.1016/j.conbuildmat.2006.08.006   DOI
13 Zheng YC. Shrinkage of Geopolymer [master;s thesis]. [Melbourne (Australia)]: The university of Melbourne; 2009. 110 p.
14 Collins F, Sanjayan JG. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cement and Concrete Research. 2000 Sep;30(9):1401-6. https://doi.org/10.1016/S0008-8846(00)00327-6   DOI
15 Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surface A: Physicochemical and Engineering Aspects. 2007 Jan;292(1):8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044   DOI
16 Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: A cementfor the future. Cement Concrete Research. 1999 Aug;29(8):1323-9. https://doi.org/10.1016/S0008-8846(98)00243-9   DOI