• 제목/요약/키워드: odontoblast

검색결과 76건 처리시간 0.025초

Cytotoxicity of Bupivacaine in Odontoblasts

  • Kim, Hyun-Jeong
    • International Journal of Oral Biology
    • /
    • 제32권2호
    • /
    • pp.45-49
    • /
    • 2007
  • In this study, the cytotoxicity of commonly used local anesthetics was evaluated on odontoblasts which are essential for pulpal homeostasis in vitro. Local anesthetics, such as articaine, bupivacaine, levobupivacaine, lidocaine, mepivacaine, prilocaine, and procaine, were tested on the odontoblast cell line, MDPC-23. The concentration-and time-dependent cytotoxic effects of local anesthetics on odontoblasts were measured by MTT assay. Among local anesthetics treated for 18 h, only bupivacaine significantly showed cell death in a concentration-($LC_{50}=1.2mM$) and time-dependent manner. To confirm cell death induced by bupivacaine, the observation of cell morphology and FACS using Annexin V and propidium iodide (PI) staining were performed. As a result of Annexin V and PI staining, as well as the morphological change, only bupivacaine induced apoptotic cell death on odontoblasts when compared with levobupivacaine and lidocaine. These results suggest that bupivacaine might affect normal pulpal integrity even after uneventful local anesthesia.

MicroRNA Analysis during Cultured Odontoblast Differentiation

  • Park, Min-Gyeong;Lee, Myoung-Hwa;Yu, Sun-Kyoung;Park, Eu-Teum;Kim, Seog;Lee, Seul-Ah;Moon, Yeon-Hee;Kim, Heung-Joong;Kim, Chun-Sung;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • 제37권3호
    • /
    • pp.146-152
    • /
    • 2012
  • MicroRNAs (miRNAs, miRs) are about 21-25 nucleotides in length and regulate mRNA translation by base pairing to partially complementary sites, predominantly in the 3'-untranslated region (3'-UTR) of the target mRNA. In this study, the expression profile of miRNAs was compared and analyzed for the establishment of miRNA-related odontoblast differentiation using MDPC-23 cells derived from mouse dental papilla cells. To determine the expression profile of miRNAs during the differentiation of MDPC-23 cells, we employed miRNA microarray analysis, quantitative real-time PCR (qRT-PCR) and Alizaline red-S staining. In the miRNA microarray analysis, 11 miRNAs were found to be up- or down-regulated more than 3-fold between day 0 (control) and day 5 of MDPC-23 cell differentiation among the 1,769 miRNAs examined. In qRT-PCR analysis, the expression levels of two of these molecules, miR-194 and miR-126, were increased and decreased in the control MDPC-23 cells compared with the MDPC-23 cells at day 5 of differentiation, respectively. Importantly, the overexpression of miR-194 significantly accelerated mineralization compared with the control cultures during the differentiation of MDPC-23 cells. These results suggest that the miR-194 augments MDPC-23 cell differentiation, and potently accelerates the mineralization process. Moreover, these in vitro results show that different miRNAs are deregulated during the differentiation of MDPC-23 cells, suggesting the involvement of these genes in the differentiation and mineralization of odontoblasts.

코엔자임 Q10 처리에 따른 TEGDMA에 의해 유발된 치아 세포 사멸 억제 효과 (The protective effect of coenzyme Q10 on cytotoxicity of regin monomer of odontoblast caused by TEGDMA)

  • 이아름;박소영;이경희
    • 한국치위생학회지
    • /
    • 제14권5호
    • /
    • pp.775-781
    • /
    • 2014
  • Objectives : The purpose of the study is to investigate the protective effect of coenzyme $Q_{10}$ on cytotoxicity effect of dental monomers in odontoblast(MDPC-23). Methods : MDPC-23 was incubated with the(co)monomers triethylene glycol dimethacrylate (TEGDMA) with and without addition of coenzyme $Q_{10}$. The cell proliferation and survival was determined using WST-1 assay. The level of reactive oxygen species(ROS) was measured by immunofluorescent staining for DCF-DA. Results : TEGDMA treatment decreased the cell proliferation by dose dependently(0.1, 1, 2.5, 5, 10 mM) on the growth of MDPC-23 cells. Coenzyme $Q_{10}$ showed cell proliferation from 5 to $500{\mu}M$ by WST-1 assay. Pre-treatment coenzyme $Q_{10}$ showed the antioxidant effect on proliferation and viability of MDPC-23 after 48h(p<0.05). The positive cells were observed in non-coenyme $Q_{10}$ treatment group(group 2) in comparison with coenyme $Q_{10}$ pre-treatment group(group 1) by DCF-DA. The fluorescence positive cells showed 14.715(group 1) and 19.788(group 2) using image J system. Conclusions : TEGDMA induced cytotoxicity. The MDPC-23 cell death was associated with the increasing ROS. Coenyme $Q_{10}$ showed the antioxidant effects by decreasing ROS. This effects may contribute to the treatment of periodontal disease induced by TEGDMA after operation.

인산(燐酸) ESTER계(系) 접착성(接着性) 시멘트의 치수반응(齒髓反應)에 관(關)한 실험적(實驗的) 연구(硏究) (AN EXPERIMENTAL STUDY ON PULPAL RESPONSE TO THE PHOSPHORIC ESTER CEMENT IN DOGS)

  • 이혜영;최대균;최부병;박남수
    • 대한치과보철학회지
    • /
    • 제24권1호
    • /
    • pp.125-138
    • /
    • 1986
  • It is considered that etching solution or material itself of phosphoric ester cement will induce not a little pulpal irritation, if applied directly onto unsealed dentinal tubules. This study was designed to confirm above consideration by comparing two different conditions between $Ca(OH)_2$-based and non-$Ca(OH)_2$-based group. Posterior teeth of 15 male dogs were selected for this experiment. One experimental group was filled with cement after $Ca(OH)_2$-basing and enamel-etching, the other experimental group after enamel etching without $Ca(OH)_2$-basing. And both of two experimental groups were observed at 2 hours, 15 hours, 3 days, 1 week, 2 weeks, 4 weeks, and 6 weeks after filling. The findings reached to the following conclusions histologically. 1. In both groups, the damaged odontoblasts were atrophied and eventually disappeared. 2. In non-based group at early stage, odontoblasts were severely atrophied and defective areas were appeared between odontoblast cell layers. However, in based group, the odontoblasts were arranged slight irregularly. 3. In non-based group, a small number of undifferentiated cells below the odontoblast cell layers started to appear at 1 week after filling. However, in based group, the undifferentiated cells were appeared at 15 hours after filling. 4. In non-based group, formation of reparative dentin was not begun until late stage of experiment. However, in based group, formation of reparative dentin matrix was begun at 2 weeks after filling and very thickened reparative dentin was formed at 6 weeks after filling. 5. In odontoblast cell layers of both groups, dilated capillaries were observed. 6. Argyrophilic fibers were reticularly condensed in zone of Weil, and they were connected to the pulp tissue and dentin.

  • PDF

흰 쥐 치아 재식 후 치수 치유 양상의 조직학적 관찰 (HISTOLOGY OF DENTAL PULP HEALING AFTER TOOTH REPLANTATION IN RATS)

  • 고은진;정한성;김의성;정일영;이승종
    • Restorative Dentistry and Endodontics
    • /
    • 제35권4호
    • /
    • pp.273-284
    • /
    • 2010
  • 본 연구의 목적은 흰 쥐(rat)를 이용하여 미성숙 단계의 치아를 발치 후 즉시 재식 하였을 때 나타나는 치수의 치유 양상을 조직학적으로 관찰하고자 하는 것이다. 생후 4주된 암컷 Sprague-Dawley 계 흰쥐의 상악 우측 제1대구치를 발거 후 원래의 치조골와 내로 위치시켰다. 재식 후 3일째부터 국소적으로 치수 내 염증 소견이 관찰되었으나, 치근 부위에서는 이미 치수의 재혈관화 및 치유가 진행되고 있는 소견이 관찰되었다. 재식 후 5일째부터는 odontoblast-like cell이 관찰되기 시작하였다. 삼차 상아질의 형성은 재식 후 1주째부터 관찰되기 시작하였으며, 2주째부터는 확실히 관찰할 수 있었다. Odontoblast-like cell 및 삼차상아질 형성은 4주째까지도 계속 관찰되었다. 재식 후 4주째에는 bone-like tissue 및 cementum-like tissue이 형성되었음을 관찰하였다. 본 실험을 통하여 흰 쥐 치아 재식 시 석회화 과정은 초기에는 삼차상아질 침착에 의해서 진행되나, 시간이 경과하면서 점차 bone-like tissue 또는 cementum-like tissue가 차지하는 비율이 증가하는 것을 관찰하였다.

상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절 (Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast)

  • 문상원;김혜선;송혜정;최홍규;박종태;김흥중;장현선;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.

Expression of DSPP mRNA During Differentiation of Human Dental Pulp-derived Cells (HDPC) and Transplantation of HDPC Using Alginate Scaffold

  • Aikawa, Fumiko;Nakatsuka, Michiko;Kumabe, Shunji;Jue, Seong-Suk;Hayashi, Hiroyuki;Shin, Je-Won;Iwai, Yasutomo
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.73-79
    • /
    • 2006
  • Tissue stem cells are used for the regenerative medicine. In previous study we observed hard tissue formation of human dental pulp-derived cells using alginate scaffold. In this study, we explore the ability to differentiate of the 13th passage cells with glycerol 2-phosphate disodium salt hydrate (${\beta}-GP$) which accelerate calcification. Reverse transcriptase Polymerase Chain Reaction (RT-PCR), transplants using alginate scaffold and histological examination were performed. We observed the expression of DSPP mRNA on day 10 cultured cells with ${\beta}-GP$. In conclusion, the 13th passage cells still have an ability to differentiate into odontoblast-like cells and alginate supports the differentiation of cultured cells in the transplants.

Effects of Chitosan on the Differentiation of MDPC-23 Cells

  • Park, Ju-Hyun;Kim, Do-Kyung;Park, Jong-Tae;Kim, Su-Young;Yu, Sun-Kyoung;Cho, Kwang-Hee;Kim, Heung-Joong
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.91-97
    • /
    • 2010
  • The effects of chitosan upon the experimentally induced differentiation of MDPC-23 cells, derived from mouse dental papilla cells, were investigated by RT-PCR, observations of cell morphology and Alizaline red-S staining. Chitosan was found to significantly increase and accelerate the expression of ALP mRNA but decrease the ColI transcript levels, as compared with the control, in a time-dependent manner during the differentiation of MDPC-23 cells. Chitosan also significantly downregulated ON mRNA expression and accelerated mineralization in differentiating MDPC-23 cells. These results suggest that chitosan facilitates odontoblast differentiation and mineralization and may have potential clinical applications as a dentin regeneration material.

탈락기(脫落期) 유치치수(乳齒齒髓)의 미세구조(微細構造)에 관(關)한 전자현미경적(電子顯微鏡的) 연구(硏究) (ELECTRON MICROSCOPIC STUDY ON THE PULP OF HUMAN PRIMARY TOOTH IN THE SHEDDING STAGE)

  • 김우철
    • 대한소아치과학회지
    • /
    • 제10권1호
    • /
    • pp.25-33
    • /
    • 1983
  • With electron microscope, author studied on the pulp structure of human primary tooth in shedding stage. Non-carious human primary molar teeth were selected for this study. Using standard methods, specimens were sectioned and examined by light and electron microscope, The results were as follows; 1. In coronal pulp, odontoblasts were replaced by multinucleated odontoclasts, which contained a large number of mitochondria of varying shape and vacuoles in cytoplasm. Where odontoclasts were in contact with tooth surface, the characteristic ruffled border and clear zone were observed. 2. Fibrous tissue with plentiful collagen fibers and fibroblasts was observed adjacent to the dentin in the pulp. Fibroblast contained a number of mitochondria and well-developed rough-surfaced endoplasmic reticulum. 3. Inflammatory cells were observed in the pulp and active fibroblasts could be seen between inflammatory cells. In many cases, cervical epithelium proliferated toward absorbed area. 4. Inflammatory cells consisted of a number of lymphocytes, polymorphonuclear leukocytes, plasma cells and macrophages. Macrophage containing lysosomes in digestive state or phagocyting PMN could be seen. 5. In the primary molar of delayed root resorption, odontoblast layer, zone of Weil and cell-rich zone could be seen at roof of pulp chamber and odontoblast in this area cont과ained some lipid droplets.

  • PDF

승마추출물이 MDPC-23세포의 분화에 미치는 영향 (Effect of Cimicifuga rhizoma extract on the odontoblastic differentiation of MDPC-23 cells)

  • 최별보라;김지영;박상례
    • 한국치위생학회지
    • /
    • 제17권3호
    • /
    • pp.441-448
    • /
    • 2017
  • Objectives: The purpose of this study was to examine the cell proliferation and expression of alkaline phosphatase (ALP) during the differentiation of murine odontoblast-like cells (MDPC-23) by Cimicifuga rhizoma extract. Cimicifuga rhizoma extract was prepared using 70% ethanol. Then, the cells were treated with 25, 50, 100, 150, and $200{\mu}g$ of Cimicifuga rhizoma extract. Methods: We determined the Cimicifuga rhizoma effects of MDPC-23 using WST-1 (water soluble tetrazolium salt-1) assay, ALP activity assay and histochemical staining. Results: $25-200{\mu}g$ of Cimicifuga rhizoma extract did not inhibit the growth of MDPC-23 cells; $100{\pm}0$, $100{\pm}3.29$, $99{\pm}4.86$, $98{\pm}3.80$, $98{\pm}1.73$, $99{\pm}5.05%$ (p<0.794). $50{\mu}g$ of Cimicifuga rhizoma extract stimulated ALP activity on MDPC-23; $5.1{\pm}0.20units/{\mu}{\ell}$ (p<0.001). Conclusions: It was proven that Cimicifuga rhizoma promoted differentiation of MDPC- 23 cells.