• Title/Summary/Keyword: ocean color algorithms

Search Result 51, Processing Time 0.023 seconds

Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

  • Park, Ji-Eun;Park, Kyung-Ae;Park, Young-Je;Han, Hee-Jeong
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.315-328
    • /
    • 2019
  • Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor. Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

Validation of Ocean Color Algorithms in the Ulleung Basin, East/Japan Sea

  • Yoo, Sin-Jae;Park, Ji-Soo;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.315-325
    • /
    • 2000
  • Observations were made to validate ocean color algorithms in the Ulleung Basin, East Sea in May 2000. Small scale and meso-scale surveys were conducted for the validation of ocean color products (nLw: normalized water-leaving radiance and chlorophyll concentration). There were discrepancies between SeaWiFS and in situ nLw showing the current aerosol models of standard SeaWiFS processing software are less than adequate (Gordon and Wang, 1994). Applying the standard SeaWiFS in-water algorithm resulted in an overestimation of chlorophyll concentration. This is because that CDOM absorption was higher than the estimated chlorophyll absorption. TSS concentration was also high. Therefore, the study region deviated from Case 1 waters. The source of these materials seems to be the entrainment of coastal water by the Tsushima Warm Current. Study of the bio-optical properties in other season is desirable.

Regional sea water chlorophyll distribution derived from MODIS for near-real time monitoring

  • Liew, S.C.;Heng, A.W.C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1039-1041
    • /
    • 2003
  • Ocean color products derived from remote sensing satellite data are useful for monitoring the sea water quality such as the concentrations of chlorophyll, sediments and dissolved organic matter. Currently, ocean color products derived from MODIS data can be requested from NASA over the internet. However, due to the bandwidth limitation of most users in this region, and the time delay in data delivery, the products cannot be use for near-real time monitoring of sea water chlorophyll. CRISP operates a MODIS data receiving station for environmental monitoring purposes. MODIS data have been routinely received and processed to level 1B. We have adapted the higher level processing algorithms from the Institutional Algorithms provided by NASA to run in a standalone environment. The implemented algorithms include the MODIS ocean color algorithms. Seasonal chlorophyll concentration composite can be compiled for the region. By comparing the near-real time chlorophyll product with the seasonal composite, anomaly in chlorophyll concentration can be detected.

  • PDF

Simulation of Remote Sensing Reflectance and Ocean Color Algorithms for High Resolution Ocean Sensor

  • Ahn, Yu-Hwan;Shanmugam, P.;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.103-106
    • /
    • 2003
  • Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.

  • PDF

Development of the Regional Algorithms to Quantify Chlorophyll a and Suspended Solid in the Korean Waters using Ocean Color (한국 근해 Ocean Color 위성자료의 정량화)

  • Suh Young Sang;Jang Lee Hyun;Lee Na Kyung;Kim Bok Kee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.207-215
    • /
    • 2002
  • Ocean color properties can be quantified by the relationship between the band ratios of the sensor on the ocean color satellites and the measured field ocean color parameters, A tool to determine the abundance of primary organism using the observed ocean color properties from satellite is presented. Coincident to ocean color satellite passes over the Korean waters, the research vessels were deployed to survey the East Sea, the South Sea and the West Sea around the Korean waters, We have been able to have more than 101) data sets containing coincident in situ chlorophyll a and the estimated chlorophyll a derived from SeaWiFS (Sea-viewing Wide Field-of-view Sensor) from february, 1999 to October, 2001. We were able to develop three proper regional algorithms for the East Sea, the South Sea and the West Sea of the Korean peninsula to estimate chlorophyll a, and set up regional algorithms to quantify the suspended solid in the southern sea of the Korean peninsula, Futhermore we were successful in finding out a simple way of estimating chlorophyll a in the turbid water (Case 2 water) using the relationship between in situ chlorophyll a and the estimated chlorophyll a from the processed level 2 data, using the NASA's global algorithm.

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eom
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.173-188
    • /
    • 2005
  • The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 해수환경분석 알고리즘 개발)

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Shanmugam, Palanisamy
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.189-207
    • /
    • 2010
  • Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter ($a_{dom}$), and remote sensing reflectance ($R_{rs}$) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI $a_{dom}$ algorithm was derived from the relationship between remote sensing reflectance band ratio ($R_{rs}(412)/R_{rs}(555)$) and $a_{dom}(\lambda)$). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula.

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

An Overview of Remote Sensing of Chlorophyll Fluorescence

  • Xing, Xiao-Gang;Zhao, Dong-Zhi;Liu, Yu-Guang;Yang, Jian-Hong;Xiu, Peng;Wang, Lin
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.49-59
    • /
    • 2007
  • Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

Comparison of CZCS and SeaWiFS Pigments for Merging the Higher Level Ocean Color Data

  • Jeong, Jong-Chul;Yoo, Shin-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.299-303
    • /
    • 2002
  • Many ocean color sensors are being operated at present and will be continued to operatein the coming years. However, these ocean color sensors have different spectral bands locations and higher level product algorithms. Thus the continuity of ocean color data from the satellite with different missions will be important for monitoring of oceanographic variation with long term research. In this study, CZCS band and algorithm are compared with OCTS and SeaWiFS algorithm for estimating chlorophyll. Missing bands of OCTS and CZCS for chlorophyll algorithm are estimated by linear-interpolation using SeaWiFS data. We were able to evaluate the effectiveness of the correction methods using linear interpolation method. Surprisingly, linear interpolation gave a better result than those of other bands.