Browse > Article
http://dx.doi.org/10.7780/kjrs.2005.21.3.173

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite  

Ahn, Yu-Hwan (Korea Ocean Research and Development Institute)
Shanmugam, Palanisamy (Korea Ocean Research and Development Institute)
Ryu, Joo-Hyung (Korea Ocean Research and Development Institute)
Moon, Jeong-Eom (Korea Ocean Research and Development Institute)
Publication Information
Korean Journal of Remote Sensing / v.21, no.3, 2005 , pp. 173-188 More about this Journal
Abstract
The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.
Keywords
Ocean color; Multi-Spectral Camera; Landsat-TM; Case-l and Case-II waters;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, Y. H., 1999. Development of an inverse model from ocean reflectance. Marine Technology Society Journal, 33: 69-80   DOI
2 Ahn, Y. H., P. Shanmugam., and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Sea. Journal of the Korean Society of Oceanography, 39, 26-34
3 Alfoldi, T. T., 1978. water quality analysis by digital chromaticity mapping of Landsat data. Canadian Journal of Remote Sensing, 4: 108- 126   DOI
4 Austin, R. W., 1980. Gulf of Mexico, ocean-color surface-truth measurements. Boundary Layer Meteorology, 18: 269-285   DOI
5 Bricaud, A., A. Morel, and L. Prieur, 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26: 43-53   DOI   ScienceOn
6 Carder, K. L., F. R. Chen., Z. P. Lee, and S. K. Hawes, 1999. Semi-analytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate depletion temperatures. Journal of Geophysical Research, 104: 5403-5421   DOI   ScienceOn
7 Garver, S. A. and D. A. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: Time series from the Sargasso Sea. Journal of Geophysical Research, 102: 18,607-18,625   DOI
8 Lee, Z. P., K. L. Carder., R. G. Steward., T. G. Peacock., C. O. Davis, and J. S. Patch, 1998. An empirical algorithm for light absorption by ocean water based on color. Journal of Geophysical Research, 103: 27,967-27,978   DOI
9 Loisel, H., D. Stramski., B. G. Mitchell., F. Fell., F. Fournier-Sicre., B. Lemasle, and M. Babin, 2001. Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling. Applied Optics, 40: 2384- 2397   DOI   PUBMED
10 O'Reilly, J. E., S. Maritorena., B. G. Mitchell., D. A. Seigel., K. L. Carder., S. A. Garver., M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103: 24,937-24953   DOI
11 Morel, A. and B. Gentli, 1996. Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote sensing problem. Applied Optics, 35: 4850-4862   DOI
12 Munday, J. C. and T. T. Alfoldi, 1979. Landsat test of diffuse reflectance models for aquatic suspended solids measurement. Remote Sensing of Environment, 8: 83-169, 145-6, 152-3
13 Kishino, M., S. Sugihara, and N. Okami, 1986. Theoretical analysis of the in situ fluorescence of chlorophyll-a on the underwater spectral irradiance. Bulletein de la Societe Franco- Japanaise d' Oceanographie, 24: 130-138
14 Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (Case-I waters). Journal of Geophysical Research, 93: 749-10,768
15 Yoo, S. J. and H. C. Kim, 2000. Validation of ocean color algorithms in the Ulleung Basin, East/Japan Sea. Journal of the Korean Society of Remote Sensing, 16: 315-325   DOI
16 Doxaran, D., J. M. Froidefond., S. Lavender, and P. Castaing, 2002. Spectral signature of highly turbid waters. Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment, 81: 149-161   DOI   ScienceOn
17 Klemas, V., D. Bartlett., W. Philpot., R. Rogers, and L. Reed, 1974. Coastal and estuarine studies with ERTS-1 and Skylab. Remote Sensing of Environment, 3: 153-74. 152,162-3   DOI   ScienceOn
18 Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge, UK
19 Gitelson, A., 1992. The peak near 700nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. International Journal of Remote Sensing, 13: 3367-3373   DOI   ScienceOn
20 Ahn, Y. H., A. Bricaud, and A. Morel, 1992. Light backscattering efficiency and related properties of some phytoplankters. Deep-Sea Research, 39: 1835-1855   DOI   ScienceOn
21 Austin, R. W., 1974. Inherent spectral radiance signatures of the ocean surface, In: Ocean color analysis. La Jolla, CA, Scripps Institute of Oceanography, pp.195
22 Doerffer, R., 1981. Factor analysis in ocean color interpretation. In: Oceanography from space, (Gower, J.F.R., ed), Plenum Press, NY, 339- 345
23 Barale, V. and C. C. Trees, 1987. Spatial variability of the ocean color field in CZCS imagery. Advances in Space Research, 7: 95-100
24 Ahn, Y. H., 2000. Development of remote sensing reflectance and water leaving radiance models for ocean color remote sensing technique. Journal of the Korean Society of Remote Sensing, 16: 240-260
25 Collins, M. and C. Pattiaratchi, 1984. Identification of suspended sediment in ocean waters using airborne thematic mapper data. International Journal of Remote Sensing, 5: 635-657   DOI   ScienceOn
26 Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722   DOI   ScienceOn
27 Gordon, H. R., D. K. Clark., J. L. Mueller, and W. A. Hovis, 1980. Phytoplankton pigments from the Nimbus-7 coastal Zone Color Scanner: Comparisons with surface measurements. Science, 210: 63-66   DOI   PUBMED   ScienceOn
28 Abbott, M. R. and D. B. Chelton, 1991. Advances in passive remote sensing of the ocean. Reviews of Geophysics, 29: 571-589
29 Bricaud, A., A. Morel, and V. Barale, 1999. MERIS potential for ocean color studies in the open ocean. International Journal of Remote Sensing, 20: 1757-1769   DOI   ScienceOn
30 Ahn, Y. H. and P. Shanmugam, 2004. New methods for correcting the atmospheric effects in Landsat Imagery over turbid waters, 20(5): 289-305
31 McClain, C. R., 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(24): 937-953
32 Bricaud, A., A. Morel., M. Babin., K. Allali, and Claustre, 1998. Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (Case- 1) waters: Analysis and implications for bio-optical models, Journal of Geophysical Research, 103: 31,033-31,044   DOI
33 Burenkov, V. I., O.V. Korelvich., S. V. Sheberstov, and V. I. Vedernikov, 2000. Sub-satellite measurements of ocean color: validation of the SeaWiFS satellite scanner data. Oceanology, 40: 357-362
34 Neville, R. A. and J. F. R. Gower, 1977. Passive remote sensing of phytoplankton via chlorophyll-a fluorescence. Journal of Geophysical Research, 82: 3487-3493   DOI   ScienceOn
35 Ahn, Y. H., 1990. Optical properties of biogeneous and mineral particles present in the ocean. Application: Inversion of reflectance. Ph.D thesis, Paris-VI University, France
36 KORDI Report, 2003. Preliminary studies and the user requirements of the ocean payloads in geostationary orbit satellites, BSPK045-00- 1536-1, Korea
37 Esaias, W. E., M. R. Abbott., I. Barton., O. B. Brown., J. W. Campbell., K. L. Carder., D. K. Clark., R. H. Evans., F. E. Hoge., H. R. Gordon., W. M. Balch., R. Letelier, and P. J. Minnett, 1998. An overview of MODIS capabilities for Ocean science observations. IEEE Transactions on Geoscience and Remote Sensing, 36: 1250- 1264   DOI   ScienceOn
38 Smith, R. C. and K. S. Baker, 1982. Oceanic chlorophyll concentrations as determined by satellite (Nimbus-7 coastal zone color scanner). Marine Biology, 66: 269-279   DOI
39 Ahn, Y. H., J. E. Moon, and S. Gallegos, 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean Journal of Remote Sensing, 17: 285- 295   DOI
40 Mitchell, B. G. and D. A. Kiefer, 1988. Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton. Deep- Sea Research, 35: 639-663   DOI   ScienceOn
41 Sathyendranath, S., G. Cota., V. Stuart., H. Maass, and T. Platt, 2001. Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. International Journal of Remote Sensing, 22: 249-273   DOI   ScienceOn
42 Stumpf, R. P. and J. R. Pennock, 1991. Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary. Remote Sensing of Environment, 38: 182-191
43 Mobley, C. D., 1999. Estimation of the remote sensing reflectance from above-sea surface. Applied Optics, 38: 7442-7455   DOI   PUBMED
44 Stramski, D., 1994. Gas micropubbles: An assessment their significance to light scattering in quiescent seas. Ocean optics XII, J.S. Jaffe, editor, Proc. Society of Photo-Optical Instrumentation Engineers, Bellingham, 2258: 704-710
45 Gordon, H. R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: A review. Lecture notes on Coastal and Estuarine studies, M. Bowman (ed.), Spring-Verlag. pp.114