Browse > Article

An Overview of Remote Sensing of Chlorophyll Fluorescence  

Xing, Xiao-Gang (Institute of Physical Oceanography, Ocean University of China)
Zhao, Dong-Zhi (National Marine Environmental Monitoring Center)
Liu, Yu-Guang (Institute of Physical Oceanography, Ocean University of China)
Yang, Jian-Hong (National Marine Environmental Monitoring Center)
Xiu, Peng (Institute of Physical Oceanography, Ocean University of China)
Wang, Lin (National Marine Environmental Monitoring Center)
Publication Information
Ocean Science Journal / v.42, no.1, 2007 , pp. 49-59 More about this Journal
Abstract
Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.
Keywords
chlorophyll-a; ocean color; fluorescence line height; reflectance ratio; MODIS; MERIS;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Falkowski, P. and D.A. Kiefer. 1985. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res., 7, 715-731   DOI
2 Fell, F., J. Fischer, M. Schaale, and T. Schroder. 2003. Retrieval of chlorophyll concentration from MERIS measurements in the spectral range of the sun-induced chlorophyll fluorescence. Ocean Remote Sens. Appl., 4892, 116-123
3 Gitelson, A.A. and K. Ya. Kondrat'et. 1991. On the mechanism of formation of maximum in the reflectance spectra near 700 nm and its application for remote monitoring of water quality. Trans. Doklady USSR Acad. Sci., 306, 1-4
4 Gitelson, A.A., Y.Z. Yacobi, D.C. Rundquist, R. Stark, L. Han, and D. Etzion. 2000. NWQMC CONFERENCE 2000, Monitoring for the Millennium
5 Gower, J.F.R. and G.A. Borstad. 1990. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. Int. J. Remote Sens., 11, 313-320   DOI   ScienceOn
6 Gower, J.F.R., S. King, W. Yan, G. Borstad, and L. Brown. 2003. Use of The 709 nm Band of MERIS to Detect Intense Plankton Blooms and Other Conditions In Coastal Waters. Proc. MERIS User Workshop, Frascati, Italy, 10-13 November 2003
7 Hoge, F.E., P.E. Lyon, R.N. Swift, J.K. Yungel, M.R. Abbott, R.M. Letelier, and W.E. Esaias. 2003. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results. Appl. Optics, 42, 2767-2771   DOI
8 IOCCG. 1999. Status and plans for Satellite Ocean-Colour Missions: Considerations for complementary missions. IOCCG Report Number 2, 18-20
9 Kishino, M., S. Sugihara, and N. Okami. 1986. Theoretical analysis of the in-situ fluorescence of chlorophyll-a on the underwater spectral irradiance. Bull. Soc. Franco-Japonaise d'Oceangr., 24, 130-138
10 Letelier, R.M. and M.R. Abbott. 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. Environ., 58, 215-223   DOI   ScienceOn
11 Tyler, J.E. and R.C. Smith. 1970. Measurements of Spectral Irradiance under Water. Gordon and Breach, New. York
12 Zhao, D.Z., F.S. Zhang, F. Du, H. Guo, and L. Zhao. 2005a. The optimized spectral bands ratio for the relation of sun-induced chlorophyll fluorescence height with high chlorophyll a concentration of algal bloom waters. Acta Oceanol. Sin., 6
13 Zhao, D.Z., F.S. Zhang, F. Du, L. Zhao, and H. Guo. 2005b. Interpretation of sun-induced fluorescence peak of chlorophyll-a on reflectance spectrum of algal waters. J. China Remote Sens., 9, 265-270
14 Campbell, D., H. Vaughan, A.K. Clarke, P. Gustafsson, and G. Oquist. 1998. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev., 62, 667-683
15 Gower, J.F.R. and G.A. Borstad. 1987. On the use of solar-stimulated fluorescence signal from chlorophyll a for airborne and satellite mapping of phytoplankton. Adv. Space Res., 7, 101-106
16 Mittenzwey, K.H., S. Breitwieser, J. Penig, A.A. Gitelson, G. Dubovitzkii, G. Garabusov, S. Ullrich, V. Vobach, and A. Muller. 1991. Fluorescence and reflectance for the in-situ determination of some quality parameters of surface waters. Acta hydrochim. Hydiobiol., 19, 3-15
17 Gower, J.F.R. and S. King. 2003. Validation of Chlorophyll Fluorescence Derived From MERIS On The West Coast of Canada. Proc. MERIS User Workshop, Frascati, Italy, 10-13 November 2003
18 Mittenzwey, K.H., A.A. Gitelson, and K.Y. Kondratiev. 1992. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnol. Oceanogr., 37, 147-149   DOI   ScienceOn
19 Vos, W.L., M. Donze, and H. Bueteveld. 1986. On the reflectance spectrum of algae in water: The nature of the peak at 700nm and its shift with varying concentration. Communications on Sanitary Engineering and Water Management, Delft, The Netherlands. Technical Report, 86-92
20 Fischer, J. and U. Kronfeld. 1990. Sun-stimulated chlorophyll fluorescence, 1. Influence of oceanic properties. Int. J. Remote Sens., 11, 2125-2147   DOI
21 Yacobi, Y.Z., A.A. Gitelson, and M. Mayo. 1995. Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat TM: Spectral features of reflectance and algorithm development. J. Plankton Res., 17, 2155-2173   DOI   ScienceOn
22 Pan, D.L., J.F.R. Gower, and S.R. Lin. 1989. A study of band selection for fluorescence remote sensing of ocean chlorophyll-a. Oceanol. Limnol. Sin., 20, 564-570
23 Gordon, H.R. 1979. Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence. Appl. Optics, 21, 2489-2492
24 Gower, J.F.R., R. Doerffer, and G.A. Borstad. 1999. Interpretation of the 685nm peak in water-leaving radiance in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens., 20, 1771-1786   DOI   ScienceOn
25 Fischer, J. and P. Schlussel. 1990. Sun-stimulated chlorophyll fluorescence, 2. Impact of atmospheric properties. Int. J. Remote Sens., 11, 2149-2162   DOI
26 Gitelson, A.A. 1992. The peak near 700nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens., 13, 3367-3373   DOI   ScienceOn
27 Neville, R.A. and J.F.R. Gower. 1977. Passive remote sensing of phytoplankton via chlorophyll fluorescence. J. Geophys. Res., 82, 3487-3493   DOI
28 Gower, J.F.R. 1980. Observation of in situ fluorescence of chlorophyll-a in Saanich Inlet. Boundary-Layer Meteorol., 18, 235-245   DOI
29 Gitelson, A.A. 1993. Algorithms for remote sensing of phytoplankton pigments in inland waters. Adv. Space Res., 13, 197-201
30 Zhao, D.Z., F. Du, L. Zhao, H. Guo, and F.S. Zhang. 2004a. On the Reflectance Spectrum of Algae in Water: Comparison of chlorophyll fluorescence algorithms for three remote sensing red tide sensors. High Tech. Lett., 14, 93-97
31 Babin, M., A. Morel, and B. Gentili. 1996. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: Consequences of natural variation in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence. Int. J. Remote Sens., 17, 2417-2448   DOI   ScienceOn
32 Morel, A. and L. Prieur. 1977. Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709-722   DOI   ScienceOn
33 Abbott, M.R., P.J. Richerson, and T.M. Powell. 1982. In situ response of phytoplankton fluorescence to rapid variations in light. Limnol. Oceanogr., 27, 218-225   DOI   ScienceOn
34 Abbott, M.R. and R.M. Letelier. 1999. MODIS ATBD No.22 Chlorophyll Fluorescence
35 Kiefer, D.A. 1973. Chlorophyll a fluorescence in maine centric diatoms: Response of chloroplasts to light and nutrients. Mar. Biol., 22, 263-269   DOI
36 Maritorena, S., A. Morel, and B. Gentili. 2000. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat. Appl. Optics, 39, 6725-6737   DOI
37 Gitelson, A.A., Y.Z. Yacobi, A. Karnieli, and N. Kress. 1996. Reflectance spectra of polluted marine waters in Haifa Bay, Southeastern Mediterranean: Features and application for remote estimation of chlorophyll concentration. Israel J. Earth Sci., 45, 127-136
38 Gower, J.F.R., L. Brown, and G. A. Borstad. 2004. Observations of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor. Can. J. Remote Sens., 30, 17-25   DOI   ScienceOn
39 Hu, C.M., F.E. Muller-Karger, C. Taylor, K.L. Carder, C. Kelble, E. Johns, and C. A. Heil. 2005. Red tide detection and tracing using MODIS fluorescence data A regional example in SW Florida coastal waters. Remote Sens. Environ., 97, 311-321   DOI   ScienceOn
40 Huot, Y., C.A. Brown, and J.J. Cullen. 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnol. Oceanogr., 3, 108-130   DOI
41 Gordon, H.R. and W.R. McCluney. 1975. Estimation ofthe depth of Sunlight penetration in the sea for remote sensing. Appl. Optics, 14, 417   DOI   ScienceOn
42 Loftus, M.E. and H.H. Seliger. 1975. Some limitations of the in vivo fluorescence technique. Cheasepeake Bay Sci., 16, 79-92   DOI   ScienceOn
43 Vasikov, A.P. and O.V. Kopelevich. 1982. The reasons of maximum at about 700 nm on radiance spectra of the sea. Oceanography, 22, 945-950
44 Zhao, D.Z., F.S. Zhang, F. Du, H. Guo, and L. Zhao. 2004b. Fluorescence Peak near 700nm on the Reflectance Spectrum of Algae in Water: The relationship of fluorescence line height with chlorophyll a concentration. China High Tech. Lett., 5, 68-72