Browse > Article
http://dx.doi.org/10.7780/kjrs.2010.26.2.189

Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI)  

Moon, Jeong-Eon (Korea Ocean Satellite Center, KORDI)
Ahn, Yu-Hwan (Korea Ocean Satellite Center, KORDI)
Ryu, Joo-Hyung (Korea Ocean Satellite Center, KORDI)
Shanmugam, Palanisamy (Department of Ocean Engineering, IIT Madras)
Publication Information
Korean Journal of Remote Sensing / v.26, no.2, 2010 , pp. 189-207 More about this Journal
Abstract
Several ocean color algorithms have been developed for GOCI (Geostationary Ocean Color Imager) using in-situ bio-optical data sets. These data sets collected around the Korean Peninsula between 1998 and 2009 include chlorophyll-a concentration (Chl-a), suspended sediment concentration (SS), absorption coefficient of dissolved organic matter ($a_{dom}$), and remote sensing reflectance ($R_{rs}$) obtained from 1348 points. The GOCI Chl-a algorithm was developed using a 4-band remote sensing reflectance ratio that account for the influence of suspended sediment and dissolved organic matter. The GOCI Chl-a algorithm reproduced in-situ chlorophyll concentration better than the other algorithms. In the SeaWiFS images, this algorithm reduced an average error of 46 % in chlorophyll concentration retrieved by standard chlorophyll algorithms of SeaWiFS. For the GOCI SS algorithm, a single band was used (Ahn et al., 2001) instead of a band ratio that is commonly used in chlorophyll algorithms. The GOCI $a_{dom}$ algorithm was derived from the relationship between remote sensing reflectance band ratio ($R_{rs}(412)/R_{rs}(555)$) and $a_{dom}(\lambda)$). The GOCI Chl-a fluorescence and GOCI red tide algorithms were developed by Ahn and Shanmugam (2007) and Ahn and Shanmugam (2006), respectively. If the launch of GOCI in June 2010 is successful, then the developed algorithms will be analyzed in the GOCI CAL/VAL processes, and improved by incorporating more data sets of the ocean optical properties data that will be obtained from waters around the Korean Peninsula.
Keywords
GOCI; Ocean Color; Chlorophyll; SS; DOM;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithm for SeaWiFS. Journal of Geophysical Research, 103(C11): 24937-24953.   DOI
2 Pradhan, Y., A. V. Thomaskutty, A. S. Rajawat, and S. Nayak, 2005. Improved regional algorithm to retrieve total suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics A: Pure and Applied Optics, 7(7): 343-349.   DOI   ScienceOn
3 Schalles, J. F., 2006. Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentration in coastal waters with varying suspended matter and CDOM concentrations. In: Remote Sensing of Aquatic Coastal Ecosystem Processes, edited by Richardson, L.L. and E.F. LeDrew, Springer, pp.27-79.
4 Lee, Z. P., K. P. Du, and R. Arnone, 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research, 110, C02016, doi:10.1029/2004JC002275.   DOI   ScienceOn
5 Letelier, R. M. and M. R. Abbott, 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment, 58(2): 215-223.   DOI   ScienceOn
6 Loise, H. and A. Morel, 1998. Light scattering and chlorophyll concentration in case 1 waters: A reexamination, Limnology and Oceanography, 43(5): 847-858.   DOI   ScienceOn
7 Maritorena, S., D. A. Siegel, and A. R. Peterson, 2002. Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics, 41(15): 2705-2714.   DOI
8 Meroni, M., M. Rossini, L. Guanter, L. Alonso, U. Rascher, R. Colombo, and J. Moreno, 2009.Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 113(10): 2037-2051.   DOI   ScienceOn
9 Miller, R. L., C. E. D. Castillo, and B. A. McKee, 2005. Remote Sensing of Coastal Aquatic Environments. Springer.
10 MODIS ATBD Report, 1997. Bio-Optical Algorithms- Case 1 Waters. edited by Clark, D.K..
11 Doerffer, R. and H. Schiller, 2007. The MERIS Case 2 water algorithm. International Journal of Remote Sensing, 28(3-4): 517-535.   DOI   ScienceOn
12 Garver, S. A. and D. Siegel, 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea. Journal of Geophysical Research, 102(C8): 18607-18625.   DOI
13 Hu, C., F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil,2005. Red tide detection and tracing using MODIS Fluorescence data: A regional example in SW Florida coastal waters. Remote Sensing of Environment, 97(3): 311-321.   DOI   ScienceOn
14 Gohin, F., J. N. Druon, and L. Lampert, 2002. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International Journal of Remote Sensing, 23(8): 1639-1661.   DOI   ScienceOn
15 Gordon, H. R. and A. Morel, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: a review. In: Lecture Notes on Coastal and Estuarine Studies, edited by Barker, R. T., N. K. Mooers, M. J. Bowman and B. Zeitzschel, Springer-Verlag, New York.
16 Hansell, D. A. and C. A. Carlson, 2002. Biogeochemistry of Marine Dissolved Organic Matter. Academic Press.
17 Huot, Y., C. A. Brown, and J. J. Cullen, 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnology and Oceanography:Methods, 3: 108-130.   DOI
18 Kahru, M. and B. G. Mitchell, 1999. Empirical chlorophyll algorithm and preliminary SeaWiFS validation for the California Current. International Journal of Remote Sensing, 20(17): 3423-3429   DOI   ScienceOn
19 Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press.
20 Lee, Z. P., K. L. Carder, and R. Arnone, 2002. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters. Applied Optics, 41(21): 5755-5772.   DOI
21 Carder, K. L., F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33(7): 1152-1159.   DOI   ScienceOn
22 Corsini, G., R. Grasso, and P. Cipollini, 2002. Regional bio-optical algorithms for the Alboran Sea from a reflectance model and in situ data. Geophysical Research Letters, 29(15), 1739, 10.1029/2001GL013861.   DOI   ScienceOn
23 Darecki, M. and D. Stramski, 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3): 326-350.   DOI   ScienceOn
24 Doerffer, R. and J. Fischer, 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research, 99(C4): 7457-7466.   DOI
25 Ahn, Y. H., P. Shanmugam, J. H. Ryu, and J.C. Jeong, 2006. Satellite detection of harmful algal bloom occurrence in Korean waters. Harmful Algae, 5(2): 213-231.   DOI   ScienceOn
26 Carder, K. L. and R. G. Steward, 1985. A remotesensing reflectance model of a red-tide dinoflagellate off west Florida. Limnology and Oceanography, 30(2): 286-298.   DOI   ScienceOn
27 Carder, K. L., R. G. Steward, G. R. Harvey, and P. B. Ortner, 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 34(1): 68-81.   DOI   ScienceOn
28 Carder, K. L., S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B.G. Mitchell, 1991. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products. Journal of Geophysical Research, 96(C11): 20599-20611.   DOI
29 Carder, K. L., F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, 1999. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophylla and absorption with bio-optical domains based on nitratedepletion temperatures. Journal of Geophysical Research, 104(C3): 5403-5421.   DOI   ScienceOn
30 Ahn, Y. H. and P. Shanmugam, 2006. Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters. Remote Sensing of Environment, 103(4): 419-437.   DOI   ScienceOn
31 Ahn, Y. H. and P. Shanmugam, 2007. Derivation and analysis of the fluorescence algorithms to estimate phytoplankton pigment concentreations in optically complex coastal waters. Journal of Optics A: Pure and Applied Optics, 9(4): 352-362.   DOI   ScienceOn
32 Bricaud, A., A. Morel, and L. Prieur, 1981. Absorption by dissolved organic matter in the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1): 43-53.   DOI   ScienceOn
33 Ahn, Y. H., J. E. Moon, and S. Gallegos, 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Korean Journal of Remote Sensing, 17(4): 285- 295.   DOI
34 문정언, 유주형, 안유환, 민지은, 최중기, 2008. 황동종 국해 엽록소 산출 알고리즘 개발에 관한 연구. 2008 한국해양과학기술협의회 공동학술대회 논문집, 제주ICC, 5월29일-30일, pp. 202.
35 안유환, 유신재, 석문식, 이흥재, 염기대, 이동영, 장만, 신경순, 문정언, 1999. 위성에 의한 적조 및 해수 탁도 원격탐사 기술개발. 한국해양연구소, BSPE98721-00-1224-01.
36 안유환, 문정언, 서원찬, 윤홍주, 2009. 해색원격탐사 활용을 위한 적조생물종 고유 광특성 연구. 한국해양환경공학회지, 12(1): 45-54.   과학기술학회마을
37 Ahn, Y. H., P. Shanmugam, and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Seas. Journal of the Korean Society of Oceanography, 39(1): 26-34.
38 Ahn, Y. H., P. Shanmugam, K. I. Chang, J. E. Moon, and J. H. Ryu, 2005. Spatial and temporal aspects of phytoplankton blooms in complex ecosystems off the Korean coast from satellite ocean color observations. Ocean Science Journal, 40(2): 67-78.   과학기술학회마을   DOI
39 문정언, 안유환, 유주형, 양찬수, 최중기, 2005. "CASE-II water" 클로로필 알고리즘 개발을 위한 클로로필, 부유물, 용존유기물의 해양광학 적 상관관계 분석. 2005 한국해양학회 추계학술 발표대회 논문집, 한국해양연구원, 11월03일- 04일, pp. 246-250.
40 문정언, 안유환, 최중기, 2002. 우리나라 주변 해역에 대한 SeaWiFS chlorophyll 표준 알고리즘의 적합성 연구. 2002 한국해양학회 추계학술발표대회 논문집, 한양대학교, 11월14일-15일, pp. 103-107.
41 Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709-722.   DOI   ScienceOn
42 Tassan, S., 1994. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Applied Optics, 33(12): 2369-2378.   DOI   ScienceOn
43 Zhang, M., J. Tang, Q. Dong, Q. T. Song, and J. Ding, 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2): 392-403.   DOI   ScienceOn
44 Schiller, H. and R. Doerffer, 1999. Neural network for emulation of an inverse model-operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing, 20(9): 1735-1746.   DOI   ScienceOn
45 Shanmugam, P., Y. H. Ahn, and P. S. Ram, 2008. SeaWiFS sensing of hazardous algal blooms and their underlying mechanisms in shelfslope waters of the Nothwest Pacific during summer. Remote Sensing of Environment,112(8): 3248-3270.   DOI
46 Siswanto, E., J. Tang, Y. H. Ahn, J. Ishizaka, S. J. Yoo, S. W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, and H. Kawamura, 2010. Ocean color algorithms to retrieve chlorophyll-a, total suspended matter and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. (in preparation).
47 Tassan, S., 1988. The effect of dissolved "yellow substance" on the quantitative retrieval of chlorophyll and total suspended sediment concentrations from remote measurements of water colour. International Journal of Remote Sensing, 9(4): 787-797.   DOI   ScienceOn
48 Tang, D. L., H. Kawamura, H. Doan-Nhu, and W. Takahashi, 2004. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. Journal of Geophysical Research, 109, C03014, doi:10.1029/2003JC002045.   DOI