An Overview of Remote Sensing of Chlorophyll Fluorescence

  • Xing, Xiao-Gang (Institute of Physical Oceanography, Ocean University of China) ;
  • Zhao, Dong-Zhi (National Marine Environmental Monitoring Center) ;
  • Liu, Yu-Guang (Institute of Physical Oceanography, Ocean University of China) ;
  • Yang, Jian-Hong (National Marine Environmental Monitoring Center) ;
  • Xiu, Peng (Institute of Physical Oceanography, Ocean University of China) ;
  • Wang, Lin (National Marine Environmental Monitoring Center)
  • Published : 2007.03.30

Abstract

Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

Keywords

References

  1. Abbott, M.R., P.J. Richerson, and T.M. Powell. 1982. In situ response of phytoplankton fluorescence to rapid variations in light. Limnol. Oceanogr., 27, 218-225 https://doi.org/10.4319/lo.1982.27.2.0218
  2. Abbott, M.R. and R.M. Letelier. 1999. MODIS ATBD No.22 Chlorophyll Fluorescence
  3. Babin, M., A. Morel, and B. Gentili. 1996. Remote sensing of sea surface Sun-induced chlorophyll fluorescence: Consequences of natural variation in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence. Int. J. Remote Sens., 17, 2417-2448 https://doi.org/10.1080/01431169608948781
  4. Campbell, D., H. Vaughan, A.K. Clarke, P. Gustafsson, and G. Oquist. 1998. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev., 62, 667-683
  5. Falkowski, P. and D.A. Kiefer. 1985. Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. J. Plankton Res., 7, 715-731 https://doi.org/10.1093/plankt/7.5.715
  6. Fell, F., J. Fischer, M. Schaale, and T. Schroder. 2003. Retrieval of chlorophyll concentration from MERIS measurements in the spectral range of the sun-induced chlorophyll fluorescence. Ocean Remote Sens. Appl., 4892, 116-123
  7. Fischer, J. and U. Kronfeld. 1990. Sun-stimulated chlorophyll fluorescence, 1. Influence of oceanic properties. Int. J. Remote Sens., 11, 2125-2147 https://doi.org/10.1080/01431169008955166
  8. Fischer, J. and P. Schlussel. 1990. Sun-stimulated chlorophyll fluorescence, 2. Impact of atmospheric properties. Int. J. Remote Sens., 11, 2149-2162 https://doi.org/10.1080/01431169008955167
  9. Gitelson, A.A. 1992. The peak near 700nm on reflectance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens., 13, 3367-3373 https://doi.org/10.1080/01431169208904125
  10. Gitelson, A.A. 1993. Algorithms for remote sensing of phytoplankton pigments in inland waters. Adv. Space Res., 13, 197-201
  11. Gitelson, A.A. and K. Ya. Kondrat'et. 1991. On the mechanism of formation of maximum in the reflectance spectra near 700 nm and its application for remote monitoring of water quality. Trans. Doklady USSR Acad. Sci., 306, 1-4
  12. Gitelson, A.A., Y.Z. Yacobi, A. Karnieli, and N. Kress. 1996. Reflectance spectra of polluted marine waters in Haifa Bay, Southeastern Mediterranean: Features and application for remote estimation of chlorophyll concentration. Israel J. Earth Sci., 45, 127-136
  13. Gitelson, A.A., Y.Z. Yacobi, D.C. Rundquist, R. Stark, L. Han, and D. Etzion. 2000. NWQMC CONFERENCE 2000, Monitoring for the Millennium
  14. Gordon, H.R. 1979. Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence. Appl. Optics, 21, 2489-2492
  15. Gordon, H.R. and W.R. McCluney. 1975. Estimation ofthe depth of Sunlight penetration in the sea for remote sensing. Appl. Optics, 14, 417 https://doi.org/10.1364/AO.14.000417
  16. Gower, J.F.R. 1980. Observation of in situ fluorescence of chlorophyll-a in Saanich Inlet. Boundary-Layer Meteorol., 18, 235-245 https://doi.org/10.1007/BF00122022
  17. Gower, J.F.R. and G.A. Borstad. 1987. On the use of solar-stimulated fluorescence signal from chlorophyll a for airborne and satellite mapping of phytoplankton. Adv. Space Res., 7, 101-106
  18. Gower, J.F.R. and G.A. Borstad. 1990. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. Int. J. Remote Sens., 11, 313-320 https://doi.org/10.1080/01431169008955022
  19. Gower, J.F.R., L. Brown, and G. A. Borstad. 2004. Observations of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor. Can. J. Remote Sens., 30, 17-25 https://doi.org/10.5589/m03-048
  20. Gower, J.F.R., R. Doerffer, and G.A. Borstad. 1999. Interpretation of the 685nm peak in water-leaving radiance in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sens., 20, 1771-1786 https://doi.org/10.1080/014311699212470
  21. Gower, J.F.R. and S. King. 2003. Validation of Chlorophyll Fluorescence Derived From MERIS On The West Coast of Canada. Proc. MERIS User Workshop, Frascati, Italy, 10-13 November 2003
  22. Gower, J.F.R., S. King, W. Yan, G. Borstad, and L. Brown. 2003. Use of The 709 nm Band of MERIS to Detect Intense Plankton Blooms and Other Conditions In Coastal Waters. Proc. MERIS User Workshop, Frascati, Italy, 10-13 November 2003
  23. Hoge, F.E., P.E. Lyon, R.N. Swift, J.K. Yungel, M.R. Abbott, R.M. Letelier, and W.E. Esaias. 2003. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results. Appl. Optics, 42, 2767-2771 https://doi.org/10.1364/AO.42.002767
  24. Hu, C.M., F.E. Muller-Karger, C. Taylor, K.L. Carder, C. Kelble, E. Johns, and C. A. Heil. 2005. Red tide detection and tracing using MODIS fluorescence data A regional example in SW Florida coastal waters. Remote Sens. Environ., 97, 311-321 https://doi.org/10.1016/j.rse.2005.05.013
  25. Huot, Y., C.A. Brown, and J.J. Cullen. 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnol. Oceanogr., 3, 108-130 https://doi.org/10.4319/lom.2005.3.108
  26. IOCCG. 1999. Status and plans for Satellite Ocean-Colour Missions: Considerations for complementary missions. IOCCG Report Number 2, 18-20
  27. Kiefer, D.A. 1973. Chlorophyll a fluorescence in maine centric diatoms: Response of chloroplasts to light and nutrients. Mar. Biol., 22, 263-269 https://doi.org/10.1007/BF00389180
  28. Kishino, M., S. Sugihara, and N. Okami. 1986. Theoretical analysis of the in-situ fluorescence of chlorophyll-a on the underwater spectral irradiance. Bull. Soc. Franco-Japonaise d'Oceangr., 24, 130-138
  29. Letelier, R.M. and M.R. Abbott. 1996. An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. Environ., 58, 215-223 https://doi.org/10.1016/S0034-4257(96)00073-9
  30. Loftus, M.E. and H.H. Seliger. 1975. Some limitations of the in vivo fluorescence technique. Cheasepeake Bay Sci., 16, 79-92 https://doi.org/10.2307/1350685
  31. Maritorena, S., A. Morel, and B. Gentili. 2000. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat. Appl. Optics, 39, 6725-6737 https://doi.org/10.1364/AO.39.006725
  32. Mittenzwey, K.H., A.A. Gitelson, and K.Y. Kondratiev. 1992. Determination of chlorophyll a of inland waters on the basis of spectral reflectance. Limnol. Oceanogr., 37, 147-149 https://doi.org/10.4319/lo.1992.37.1.0147
  33. Mittenzwey, K.H., S. Breitwieser, J. Penig, A.A. Gitelson, G. Dubovitzkii, G. Garabusov, S. Ullrich, V. Vobach, and A. Muller. 1991. Fluorescence and reflectance for the in-situ determination of some quality parameters of surface waters. Acta hydrochim. Hydiobiol., 19, 3-15
  34. Morel, A. and L. Prieur. 1977. Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709-722 https://doi.org/10.4319/lo.1977.22.4.0709
  35. Neville, R.A. and J.F.R. Gower. 1977. Passive remote sensing of phytoplankton via chlorophyll fluorescence. J. Geophys. Res., 82, 3487-3493 https://doi.org/10.1029/JC082i024p03487
  36. Pan, D.L., J.F.R. Gower, and S.R. Lin. 1989. A study of band selection for fluorescence remote sensing of ocean chlorophyll-a. Oceanol. Limnol. Sin., 20, 564-570
  37. Tyler, J.E. and R.C. Smith. 1970. Measurements of Spectral Irradiance under Water. Gordon and Breach, New. York
  38. Vasikov, A.P. and O.V. Kopelevich. 1982. The reasons of maximum at about 700 nm on radiance spectra of the sea. Oceanography, 22, 945-950
  39. Vos, W.L., M. Donze, and H. Bueteveld. 1986. On the reflectance spectrum of algae in water: The nature of the peak at 700nm and its shift with varying concentration. Communications on Sanitary Engineering and Water Management, Delft, The Netherlands. Technical Report, 86-92
  40. Yacobi, Y.Z., A.A. Gitelson, and M. Mayo. 1995. Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat TM: Spectral features of reflectance and algorithm development. J. Plankton Res., 17, 2155-2173 https://doi.org/10.1093/plankt/17.11.2155
  41. Zhao, D.Z., F. Du, L. Zhao, H. Guo, and F.S. Zhang. 2004a. On the Reflectance Spectrum of Algae in Water: Comparison of chlorophyll fluorescence algorithms for three remote sensing red tide sensors. High Tech. Lett., 14, 93-97
  42. Zhao, D.Z., F.S. Zhang, F. Du, H. Guo, and L. Zhao. 2004b. Fluorescence Peak near 700nm on the Reflectance Spectrum of Algae in Water: The relationship of fluorescence line height with chlorophyll a concentration. China High Tech. Lett., 5, 68-72
  43. Zhao, D.Z., F.S. Zhang, F. Du, H. Guo, and L. Zhao. 2005a. The optimized spectral bands ratio for the relation of sun-induced chlorophyll fluorescence height with high chlorophyll a concentration of algal bloom waters. Acta Oceanol. Sin., 6
  44. Zhao, D.Z., F.S. Zhang, F. Du, L. Zhao, and H. Guo. 2005b. Interpretation of sun-induced fluorescence peak of chlorophyll-a on reflectance spectrum of algal waters. J. China Remote Sens., 9, 265-270