• 제목/요약/키워드: observer-based control

검색결과 772건 처리시간 0.028초

영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기 (Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors)

  • 정진우
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Observer Based Nonlinear State Feedback Control of PEM Fuel Cell Systems

  • Kim, Eung-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.891-897
    • /
    • 2012
  • In this paper, the observer based nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using the Lyapunov's stability analysis strategy.

축차관측기를 사용한 슬라이딩 모드 제어 (Reduced Order Observer Based Sliding Mode Control)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1057-1060
    • /
    • 2006
  • This paper presents an LMI-based method to design a reduced order observer based sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a reduced order observer and a sliding mode control law. And we give explicit formulas of the gain matrices. Finally, we give a numerical design example, together with a design algorithm.

교통량 제어 시스템을 위한 퍼지 관측기 설계 (Fuzzy Observer Design for Traffic Control System)

  • 맹건표;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.18-21
    • /
    • 2014
  • We propose a nonlinear observer design method for traffic control systems based on T-S fuzzy approach. We parameterize the observer gains in terms of the solution matrices of LMIs. We also give a simple algorithm to compute the observer gain matrices. Finally we give simulation results to show the effectiveness of the proposed fuzzy observer design method.

Observer-based Feedback Controller Design for Robust Tracking of Discrete-time Polytopic Uncertain LTI Systems

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2427-2433
    • /
    • 2015
  • This paper presents an observer-based robust controller for constant reference tracking of linear time invariant systems with polytopic model uncertainties. To this end, this paper not only designs a robust integral controller gain but also suggests how to determine the robust observer gain and the observer model used in the observer. Since the observer model selection is not obvious due to the polytopic uncertainties, particular attention needs to be paid to that. This paper computes the robust controller and observer gains first. Then, the observer model is selected in a way that the whole closedloop is stable and LMIs are used in the middle of choosing the gains and observer model. Simulation examples show that the proposed observer-based feedback control successfully achieves robust reference tracking.

바이너리 외란관측기를 이용한 유도전동기의 견실한 위치제어 (The Robust Position Control of Induction Motors using a Binary Disturbance Observer)

  • 한윤석;최정수;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권4호
    • /
    • pp.203-211
    • /
    • 1999
  • A control approach for the robust position control of induction motors based on the binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may exist in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, new binary disturbance observer with an integral augmented switching hyperplane is proposed. The robustness is achieved, and the continuous control is realized by employing the proposed observer without the chattering problem and the steady state error. The effectiveness of the proposed observer is confirmed by the comparative experimental results.

  • PDF

외란 관측기를 이용한 모형 자율 주행 자동차의 강인 속도 제어 (Robust Speed Control of an Autonomous Vehicle Using Disturbance Observer)

  • 고영준;김영준;김정수
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.339-345
    • /
    • 2016
  • This paper presents a robust speed control of an autonomous vehicle using a disturbance observer. For the purpose, the transfer function of speed dynamics of an autonomous vehicle is identified using step response data. Based on the identified transfer function, model based PID (Proportional-Integral-Derivative) control is designed. In order to design a robust control against load variations on the vehicle, a disturbance observer (DOB) based control is devised. The performance of the designed DOB based control is demonstrated by real experiments.

불확실한 비선형 시스템의 퍼지 관측기 기반의 슬라이딩 모드 제어기 설계 (Sliding Mode Controller Design Based On The Fuzzy Observer For Uncertain Nonlinear System)

  • 서호준;박장현;허성희;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.284-284
    • /
    • 2000
  • In adaptive fuzzy control systems. fuzzy systems are used to approximate the unknown plant nonlinearities. Until now. most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure based on system state availability. This paper considers observer-based nonlinear controller and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters for state observer and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

Sliding Mode Control based on Disturbance Observer for Magnetic Levitation Positioning Stage

  • Zhang, Shansi;Ma, Shuyuan;Wang, Weiming
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2116-2124
    • /
    • 2018
  • Magnetic levitation system with the advantages of non-contact, no friction and no wear can satisfy the requirement of high precision and high speed positioning. In this paper, magnetic levitation positioning stage which mainly consists of planar coil and HALBACH permanent magnet array and its control and driving system are designed. Magnetic levitation system is a highly nonlinear and strongly coupled complex system and its control performance can be influenced by the uncertainty and external disturbance. So exact feedback linearization method is used to realize exact linearization and decoupling, and a strategy of sliding mode control based on disturbance observer is proposed to compensate the uncertainty and external disturbance. Detailed proofs of observer's convergence property and system stability are derived. Both the simulation and experiment results verify the effectiveness of sliding mode control algorithm based on disturbance observer.