• Title/Summary/Keyword: observer effects

Search Result 136, Processing Time 0.027 seconds

The effects of digital image processing for noise reduction on observer performance (노이즈 감소 필터 사용이 판독능에 미치는 효과)

  • Jung, Young-Chul;Choi, Bo-Ram;Huh, Kyung-Hoi;Yi, Yon-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.40 no.3
    • /
    • pp.103-107
    • /
    • 2010
  • Purpose : This study was performed to examine the effects of image filter on observer performance by counting the number of holes at each wedge step on a radiographic image. Materials and Methods : An aluminum step wedge with 11 steps ranged in thickness from 1.5 mm to 16.5 mm in 1.5 mm increments was fabricated for this study. Each step had 10 notched holes with 1.0 mm diameter on the bottom of the step wedge which were ranged in depths from 0.1 mm to 1.0 mm in 0.1 mm increments. Digital radiographic raw images of the aluminum step wedge were acquired by using CCD intraoral sensor. The images were processed using several types of noise reduction filters and kernel sizes. Three observers counted the number of holes which could be discriminated on each step. The data were analyzed by ANOVA. Results : The number of holes at each step was decreased as the thickness of step was increased. The number of holes at each step on the raw images was significantly higher than that on the processed images. The number of holes was different according to the types and kernel sizes of the image filters. Conclusions : The types and kernel sizes of image filters on observer performance were important, therefore, they should be standardized for commercial digital imaging systems.

Effects of plasma Immersion ion Implanted and deposited layer on Adhesion Strength of DLC film

  • Yi Jin-Woo;Kim Jong-KuK;Kim Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.301-305
    • /
    • 2004
  • Effects of ion implantation on the adhesion strength of DLC film as a function of ion doses and implanted energies were investigated. Ti ions were implanted on the Si-wafer substrates followed by DLC coating using ion beam deposition method. Adhesion strength of DLC films were determined by scratch adhesion tester. Morphologies and compositional variations at the different ion energies and doses were observer by Laser Microscope and Auger Electron Spectroscopy, respectively. From results of scratch test, the adhesion strength of films was improved as increasing ion implanted energy, however there was no significant evidence with ion dose.

  • PDF

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Robust Impedance Control of High-DOF Robot Based on ISMC and DOB (ISMC와 외란관측기 기반 고자유도 로봇의 강인한 임피던스제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Kim, Min-chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-179
    • /
    • 2017
  • This paper proposes a robust impedance controller for high-DOF robots. The model-based control of a higher DOF robot uses a numerical dynamic model because the analytical dynamic model is difficult to be derived and this means that modeling error is inevitable. The impedance control in the task space is affected by joint motions and has more difficulties in the higher DOF robots. In addition, the disturbances must be decoupled in the control of high DOF robot. This paper proposes a robust impedance controller based on integral sliding mode control (ISMC) and disturbance observer(DOB) for high-DOF robot manipulator. The ISMC is used to improve the robustness of the impedance control and to preserve its nominal performance. DOB is also employed to cancel the effects of input disturbances and to reduce the maximum gain of the ISMC which eventually determines the input chattering size.

Buffered versus unbuffered local anesthesia for inferior alveolar nerve block injections in children: a systematic review

  • Tirupathi, Sunny Priyatham;Rajasekhar, Srinitya
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.5
    • /
    • pp.271-279
    • /
    • 2020
  • Background: The present study aimed to evaluate and compare the efficacy of buffered and unbuffered local anesthesia solutions during inferior alveolar nerve block (IANB) administration in children. Methods: PubMed, Ovid SP, and Cochrane databases were searched separately by two independent reviewers for potential papers published between 1980 and April 2020 using relevant MeSH terms and pre-specified inclusion and exclusion criteria. T Studies of IANB administration in children comparing buffered and unbuffered local anesthesia solutions were evaluated. The primary outcome evaluated was pain (perception and reaction), while the secondary outcome was the onset of anesthesia. Results: A total of five articles were included in a qualitative analysis; among them, four qualified for quantitative analysis of the primary outcome and three for quantitative analysis of the secondary outcome. A fixed-effects model was used to perform the meta-analysis. Pain perception (child-reported pain): Significantly lower pain scores were reported with buffered local anesthesia solution than with unbuffered solution (P = 0.006, MD: -0.32, 95% CI: -0.55 to -0.09). Pain reaction (observer-reported pain reaction in child): No significant difference was found between buffered and unbuffered solution in terms of observer-reported pain behavior in the child (P = 0.09, MD: -0.21, 95% CI: -0.46 to 0.04). Onset of anesthesia: A significantly lower duration of anesthesia onset was reported with buffered local anesthesia solution than with unbuffered solution (P = 0.00001, MD: -12.38, 95% CI: -17.64 to -7.13]. Conclusion: Buffering local anesthesia solution may reduce discomfort due to IANB injection administration and lower the initial onset time of anesthesia. More randomized control trials with adequate sample sizes should be carried out to validate the accuracy of these results.

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

Speed Sensorless Vector Control of Induction Motors with the Identification of Rotor Resistance (회전자저항동정을 갖는 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Choi, Se-Wan;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.510-513
    • /
    • 1996
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification at the beginning of the transient state. And an adaptive flux observer is used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verity the validity of the proposed algorithm.

  • PDF

입체영상에서 자극의 색상, 배경색, 제시거리가 인간의 심도지각에 미치는 영향에 관한 연구

  • 박경수;이안재
    • Proceedings of the ESK Conference
    • /
    • 1995.04a
    • /
    • pp.181-186
    • /
    • 1995
  • This study investigated the effects of several factors - stimulus color, background color, and predicted depth - that affect depth perception in stereoscopic displays. For this study, two experiments were conducted; in the first experiment, the subjects were asked to indicate the depth perceived from presented image(rectangle) using matching mark, and in the second experiment, the subjects were asked to adjust one image(controllable rectangle) to have the same perceived depth as the other image(fixed rectangle) using keyboard. The depth perceived under various combination of levels of these factors was compared with depth predicted by the geometry of streopsis. Through two experiments, we found that stimulus color, predicted depth, and interaction between stimulus color and background color affected perceived depth significantly, and that red was perceived to be closest to the observer followed by yellow, green, and then blue.