• Title/Summary/Keyword: observation-error model

Search Result 259, Processing Time 0.024 seconds

A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization (지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.

A Study on Initial Cell Search Parameters in UMTS Terminal Modem (UMTS 단말기 모뎀의 초기 셀 탐색 파라미터의 영향에 대한 연구)

  • 류동렬;김용석;옥광만;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.267-275
    • /
    • 2003
  • In UMTS terminal modem uses 3 step search procedure for initial cell search, which comprises 1) slot synchronization, 2) code group identification and frame synchronization, and 3) scrambling-code identification. The performance of initial cell search procedure depends on search parameters like observation time and threshold. The purpose of this paper is to get the optimal observation time and threshold of each step for minimum mean acquisition time. In this paper we induce mean detection time of each step and mean acquisition timefrom the model of 3 step search procedure using state diagram. Also we propose initial cell search algorithm which utilize window search method against initial oscillator error, and select an appropriate observation time and threshold of each step by the analysis of simulation and induced result. It is shown that the mean acquisition time in multipath fading channel can be shorter than 500ms by using the determined observation time and threshold of each step.

Sensitivity Analysis of Satellite BUV Ozone Profile Retrievals on Meteorological Parameter Errors (기상 입력장 오차에 대한 자외선 오존 프로파일 산출 알고리즘 민감도 분석)

  • Shin, Daegeun;Bak, Juseon;Kim, Jae Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.481-494
    • /
    • 2018
  • The accurate radiative transfer model simulation is essential for an accurate ozone profile retrieval using optimal estimation from backscattered ultraviolet (BUV) measurement. The input parameters of the radiative transfer model are the main factors that determine the model accuracy. In particular, meteorological parameters such as temperature and surface pressure have a direct effect on simulating radiation spectrum as a component for calculating ozone absorption cross section and Rayleigh scattering. Hence, a sensitivity of UV ozone profile retrievals to these parameters has been investigated using radiative transfer model. The surface pressure shows an average error within 100 hPa in the daily / monthly climatological data based on the numerical weather prediction model, and the calculated ozone retrieval error is less than 0.2 DU for each layer. On the other hand, the temperature shows an error of 1-7K depending on the observation station and altitude for the same daily / monthly climatological data, and the calculated ozone retrieval error is about 4 DU for each layer. These results can help to understand the obtained vertical ozone information from satellite. In addition, they are expected to be used effectively in selecting the meteorological input data and establishing the system design direction in the process of applying the algorithm to satellite operation.

Precision Validation of GPS Precipitable Water Vapor via Comparison with MWR Measurements (MWR 관측치와 비교를 통한 GPS 가강수량 정밀도 검증)

  • Ha, Jihyun;Park, Kwan-Dong;Chang, Ki-Ho;Yang, Ha-Young
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.291-298
    • /
    • 2007
  • The precipitable water vapors (PWVs) obtained from Global Positioning System (GPS) and Microwave Radiometer (MWR) measurements have been compared for validation of precision of the GPS PWV at Daegwallyoung station for 21 days from Sep. 30 to Oct. 20, 2006. The GPS PWV is estimated using the delay of GPS signals due to the water vapor in the atmosphere with a local mean temperature equation, called HP model, and the MWR PWV by the combinational radiance observation of two channels (23.8 and 31.4 GHz). During the co-observation period, the MWR and GPS PWV show a similar trend, and the bias between the PWVs is 1.7 mm on average. When the bias is removed, the PWV of GPS gives good agreement with that of MWR, having about 1 mm for both the standard deviation and RMS error between the GPS and MWR PWV.

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Estimation of Seawater Intrusion Range in the Daechang Area Using 3D-FEMWATER Model (3D-FEMWATER 모델을 이용한 대창지역의 해수침투 범위추정)

  • Kim Kyoung-Ho;Park Jae-Sung;Lee Ho-Jin;Youn Ju-Heum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.3-13
    • /
    • 2005
  • The present study examined the 3 dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3 dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336{\~}+107 mg/{\iota}$. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion. According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.

A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model (한국형모델의 항공기 관측 온도의 정적 편차 보정 연구)

  • Choi, Dayoung;Ha, Ji-Hyun;Hwang, Yoon-Jeong;Kang, Jeon-ho;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

THE ORBIT DETERMINATION OF LEO SATELLITES USING EXTENDED KALMAN FILTER (확장 칼만 필터를 이용한 LEO 위성의 궤도결정 방법)

  • 손건호;김광렬;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.133-142
    • /
    • 1995
  • We studied the nonlinear estimation problem of extended Kalman filter and appled this method to LEO satellite system. Through this method the performance of extended Kalman filter was analyzed. There were certain presumption taken; J2 and atmospheric drag were simply considered in the dynamic model of LEO satellite and the system noise error of $\sigma_r$=150m, $\sigma_r$=10m/s was presumed in the observation data. As results of this simulation, the overall state estimation errors of extended Kalman filter were within the presumed error range and also the ability of performance was maximized when the condition was the state process noise Q has the 1/10 level of covariance matrix Po.

  • PDF

A Capturing Algorithm of Moving Object using Single Curvature Trajectory (단일곡률궤적을 이용한 이동물체의 포획 알고리즘)

  • Choi Byoung-Suk;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

A Study of Optimization of α-β-γ-η Filter for Tracking a High Dynamic Target

  • Pan, Bao-Feng;Njonjo, Anne Wanjiru;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • The tracking filter plays a key role in accurate estimation and prediction of maneuvering the vessel's position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The ${\alpha}-{\beta}-{\gamma}$ filter is one of the special cases of the general solution provided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity, and acceleration for the nth observation, and predicts the next position and velocity. Although found to track a maneuvering target with good accuracy than the constant velocity ${\alpha}-{\beta}$ filter, the ${\alpha}-{\beta}-{\gamma}$ filter does not perform impressively under high maneuvers, such as when the target is undergoing changing accelerations. This study aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The ${\alpha}-{\beta}-{\gamma}$ filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration to improve the filter's performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, ${\alpha}-{\beta}-{\gamma}-{\eta}$ algorithm as compared to the constant acceleration model, ${\alpha}-{\beta}-{\gamma}$ in terms of error reduction and stability of the filter during target maneuver.