Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.3.4

Sensitivity Analysis of Satellite BUV Ozone Profile Retrievals on Meteorological Parameter Errors  

Shin, Daegeun (Department of Atmospheric Science, Pusan National University)
Bak, Juseon (Harvard-Smithsonian Center for Astrophysics)
Kim, Jae Hwan (Department of Atmospheric Science, Pusan National University)
Publication Information
Korean Journal of Remote Sensing / v.34, no.3, 2018 , pp. 481-494 More about this Journal
Abstract
The accurate radiative transfer model simulation is essential for an accurate ozone profile retrieval using optimal estimation from backscattered ultraviolet (BUV) measurement. The input parameters of the radiative transfer model are the main factors that determine the model accuracy. In particular, meteorological parameters such as temperature and surface pressure have a direct effect on simulating radiation spectrum as a component for calculating ozone absorption cross section and Rayleigh scattering. Hence, a sensitivity of UV ozone profile retrievals to these parameters has been investigated using radiative transfer model. The surface pressure shows an average error within 100 hPa in the daily / monthly climatological data based on the numerical weather prediction model, and the calculated ozone retrieval error is less than 0.2 DU for each layer. On the other hand, the temperature shows an error of 1-7K depending on the observation station and altitude for the same daily / monthly climatological data, and the calculated ozone retrieval error is about 4 DU for each layer. These results can help to understand the obtained vertical ozone information from satellite. In addition, they are expected to be used effectively in selecting the meteorological input data and establishing the system design direction in the process of applying the algorithm to satellite operation.
Keywords
Ozone; Ozone Profile; Sensitivity Test; Temperature; Surface Pressure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brion, J., A. Chakir, D. Daumont, and J. Malicet, 1993. High-resolution laboratory absorption cross section of O3 Temperature effect, Chemical Physics Letters, 213(5-6): 610-612.   DOI
2 Bovensmann, H., J.P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V.V. Rozanov, K.V. Chance, and A.P.H. Goede, 1999. SCIAMACHY: Mission Objectives and Measurement Modes, Journal of the Atmospheric Sciences, 56(2): 127-150.   DOI
3 Burrows, J.P., M. Weber, M. Buchwitz, V. Rozanov, A. Ladstatter-WeiBenmayer, A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K.U. Eichmann, M. Eisinger, and D. Perner, 1999. The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results, Journal of the Atmospheric Sciences, 56: 151-175.   DOI
4 Callies, J., E. Corpaccioli, M. Eisinger, A. Hahne, and A. Lefebvre, 2000. GOME-2-metop's secondgeneration sensor for operational ozone monitoring, European Space Agency Bulletin, 102: 28-36.
5 Chance, K.V., J.P. Burrows, D. Perner, and W. Schneider, 1997. Satellite measurements of atmospheric ozone profiles including tropospheric ozone from ultraviolet/visible measurements in the nadir geometry: a potential method to retrieve tropospheric ozone, Journal of Quantitative Spectroscopy & Radiative Transfer, 57(4): 467-476.   DOI
6 Choi, S., J. Bak, J.H. Kim, and K.H. Baek, 2015. Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval, Atmosphere, 25(1): 117-127 (in Korean with English abstract).   DOI
7 Komhyr, W.D., B.J. Connor, I.S. McDermid, T.J. McGee, A.D. Parrish, and J.J. Margitan, 1995. Comparison of STOIC 1989 ground-based lidar, microwave spectrometer, and Dobson spectrophotometer Umkehr ozone profiles with ozone profiles from balloon-borne electrochemical concentration cell ozonesondes, Journal of Geophysical Research, 100(D5): 9273-9282.   DOI
8 Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, 2007. Changes in Atmospheric Constituents and in Radiative Forcing, In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L.(Eds.), Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom.
9 Hofmann, D. J. and S. A. Montzka, 2009. Recovery of the ozone layer: The ozone depleting gas index, Eos, Transactions, American Geophysical Union, 90(1): 1-2.   DOI
10 Kivi, R., E. Kyro, T. Turunen, N.R.P. Harris, P. von der Gathen, M. Rex, S.B. Andersen, and I. Wohltmann, 2007. Ozonesonde observations in the Arctic during 1989-2003: Ozone variability and trends in the lower stratosphere and free troposphere, Journal of Geophysical Research, 112(D8): D08306.
11 Liu, X., P.K. Bhartia, K. Chance, R.J.D. Spurr, and T.P. Kurosu, 2010. Ozone profile retrievals from the Ozone Monitoring Instrument, Atmospheric Chemistry and Physics, 10: 2521-2537.   DOI
12 Labow, G., R.D. McPeters, P.K. Bhartia, and N. Kramarova, 2013. A comparison of 40 years of SBUV measurements of column ozone with data from the Dobson/Brewer network, Journal of Geophysical Research, 118(13): 7370-7378.   DOI
13 Levelt, P.F., G.H.J. van den Oord, M.R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J.O.V. Lundell, and H. Saari, 2006. The Ozone Monitoring Instrument, IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093-1101.   DOI
14 Liu, C., X. Liu, and K. Chance, 2013. The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements, Journal of Quantitative Spectroscopy & Radiative Transfer, 130: 365-372.   DOI
15 Liu, X., K. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, and M.J. Newchurch, 2005. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, Journal of Geophysical Research, 110(D20): D20307.   DOI
16 Liu, X., K. Chance, C.E. Sioris, and T.P. Kurosu, 2007. Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements, Atmospheric Chemistry and Physics, 7: 3571-3578.   DOI
17 McPeters, R.D., P.K. Bhartia, A.J. Krueger, J.R. Herman, C.G. Wellemeyer, C.J. Seftor, G. Jaross, O. Torres, L. Moy, G. Labow, W. Byerly, S.L. Taylor, T. Swissler, and R.P. Cebula, 1998. Earth probe total ozone mapping spectrometer (TOMS): data products user's guide, NASA Technical Publication, Greenbelt, MD, USA.
18 Rodgers, C.D., 2000. Inverse methods for atmospheric sounding: Theory and practice, World Scientific Publishing, Toh Tuck Link, Singapore.
19 Tarasick, D.W., J.J. Jin, V.E. Fioletov, G. Liu, A.M. Thompson, S.J. Oltmans, J. Liu, C.E. Sioris, X. Liu, O.R. Cooper, T. Dann, and V. Thouret, 2010. High resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes, Journal of Geophysical Research, 115(D20): D20301.   DOI
20 Spurr, R.D.J., 2006. VLIDORT: A linearized pseudospherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media, Journal of Quantitative Spectroscopy & Radiative Transfer, 102(2): 316-342.   DOI
21 Thompson, A.M., J.C. Witte, S.J. Oltmans, and F.J. Schmidlim, 2004. SHADOZ-A tropical ozonesonde-radiosonde network for the atmospheric community, Bulletin of the American Meteorological Society, 85(10): 1549-1564.   DOI
22 Valks, P. and D. Loyola, 2008. Algorithm theoretical basis document for GOME-2 total column products of ozone, minor trace gases, and cloud properties (GDP 4.2 for O3M-SAF OTO and NTO), The German Aerospace Center, Cologne, Germany.
23 van Diedenhoven, B., O.P. Hasekamp, and J. Landgraf, 2002. Effects of clouds on ozone profile retrievals from satellite measurements in the ultraviolet, Journal of Geophysical Research, 113(D15): D15311.   DOI
24 van Oss, R.F., R.H.M. Voors, and R.D.J. Spurr, 2002. Ozone profile algorithm, In: Bhartia, P.K., Levelt, P.F., van den Oord, G.H.J., Hilsenrath, E., Leppelmeier, G.W.(Eds.), OMI Algorithm Theoretical Basis Document: Vol. 2: OMI Ozone Products, NASA Goddard Space Flight Center, Greenbelt, MD, USA, pp. 51-73.
25 van Peet, J.C.A., R.J. van der A., O.N.E. Tuinder, E. Wolfram, J. Salvador, P.F. Levelt, and H.M. Kelder, 2014. Ozone ProfilE Retrieval Algorithm (OPERA) for nadir-looking satellite instruments in the UV-VIS, Atmospheric Measurement Techniques, 7(3): 859-876.   DOI
26 Bhartia, P.K., R.D. McPeters, C.L. Mateer, L.E. Flynn, and C. Wellemeyer, 1996. Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique, Journal of Geophysical Research, 101(D13): 18793-18806.   DOI
27 Wang, Y., J. Hao, M.B. McElroy, J.W. Munger, H. Ma, D. Chen, and C.P. Nielsen, 2009. Ozone air quality during the 2008 Beijing Olympics: effectiveness of emission restrictions, Atmospheric Chemistry and Physics, 9(14): 5237-5251.   DOI
28 Bak, J., J.H. Kim, X. Liu, K. Chance, and J. Kim, 2013. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra, Atmospheric Measurement Techniques, 6(2): 239-249.   DOI
29 Bak, J., X. Liu, J.H. Kim, M.T. Deland, and K. Chance, 2016. Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds, Atmospheric Measurement Techniques, 9(9): 1-11.   DOI
30 Bai, W., C. Wu, J. Li, and W. Wang, 2014. Impact of Terrain Altitude and Cloud Height on Ozone Remote Sensing from Satellite, American Meteorological Society, 31: 903-911.
31 Bhartia, P.K. and C.W. Wellemeyer, 2002. TOMS-V8 Total O3 Algorithm, In: Bhartia, P.K., Levelt, P.F., van den Oord, G.H.J., Hilsenrath, E., Leppelmeier, G.W.(Eds.), OMI Algorithm Theoretical Basis Document: Vol. 2: OMI Ozone Products, NASA Goddard Space Flight Center, Greenbelt, MD, USA, pp. 51-73.