Browse > Article
http://dx.doi.org/10.14191/Atmos.2020.30.4.319

A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model  

Choi, Dayoung (Numerical Modeling Center, Korea Meteorological Administration)
Ha, Ji-Hyun (Numerical Modeling Center, Korea Meteorological Administration)
Hwang, Yoon-Jeong (Numerical Modeling Center, Korea Meteorological Administration)
Kang, Jeon-ho (Korea Institute of Atmospheric Prediction Systems)
Lee, Yong Hee (Numerical Modeling Center, Korea Meteorological Administration)
Publication Information
Atmosphere / v.30, no.4, 2020 , pp. 319-333 More about this Journal
Abstract
Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.
Keywords
Aircraft; temperature bias correction; preprocessing; NWP;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures: Implications for NWP and climate studies. Bull. Amer. Meteor. Soc., 89, 1689-1708.   DOI
2 Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256-1271.   DOI
3 Cardinali, C., L. Isaksen, and E. Andersson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 1865-1877.   DOI
4 Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos., 120, 12445-12457, doi:10.1002/2015JD024230.   DOI
5 Choi, S.-J., and S.-Y. Hong, 2016: A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere grid. Asia-Pac. J. Atmos. Sci., 52, 291-307, doi:10.1007/s13143-016-0005-0.   DOI
6 Choi, S.-J., F. X. Giraldo, J. Kim, and S. Shin, 2014: Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects. Geosci. Model Dev., 7, 2717-2731, doi:10.5194/gmd-7-2717-2014.   DOI
7 Hwang, Y.-J., S.-Y. Park, E.-J. Lee, and S.-W. Joo, 2016: Establishment of the quality diagnosis update module for synoptic observation data based on NWP. NIMS-TN-2016-024, National Institute of Meteorological Sciences, 67 pp (in Korean).
8 Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., 54, 267-292, doi:10.1007/s13143-018-0028-9.   DOI
9 Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter. Physica D., 230, 112-126.   DOI
10 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shepherd, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103.   DOI
11 Isaksen, L., D. Vasiljevic, D. Dee, and S. Healy, 2012: Bias correction of aircraft data implemented in November 2011. ECMWF Newsletter, No. 131, ECMWF, Reading, United Kingdom, 6-6.
12 Joo, S., J. Eyre, and R. Marriott, 2012: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Met Office Forecasting Research Tech. Rep. no. 562, 20 pp.
13 Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, 303-318, doi:10.1007/s13143-018-0030-2.   DOI
14 Petersen, R. A., 2016: On the impact and benefits of AMDAR observations in operational forecasting-Part I: A review of the impact of automated aircraft wind and temperature reports. Bull. Amer. Meteor. Soc., 97, 585-602, doi:10.1175/BAMS-D-14-00055.1.   DOI
15 Koo, M.-S., S. Baek, K.-H. Seol, and K. Cho, 2017: Advances in land modeling of KIAPS based on the Noah land surface model. Asia-Pac. J. Atmos. Sci., 53, 361-373, doi:10.1007/s13143-017-0043-2.   DOI
16 Koo, M.-S., H.-J. Choi, and J.-Y. Han, 2018: A parameterization of turbulent-scale and mesoscale orographic drag in a global atmospheric model. J. Geophys. Res. Atmos., 123, 8400-8417, doi:10.1029/2017JD028176.   DOI
17 Kwon, H.-N., J.-H. Kang, and I.-H. Kwon, 2018: Bias correction for aircraft temperature observation part I: analysis of temperature bias characteristics by comparison with sonde observation. Atmosphere, 28, 357-367, doi:10.14191/Atmos.2018.28.4.357 (in Korean with English abstract).   DOI
18 Lee, E.-H., E. Lee, R. Park, Y.-C. Kwon, and S.-Y. Hong, 2018: Impact of turbulent mixing in the stratocumulus-topped boundary layer on numerical weather prediction. Asia-Pac. J. Atmos. Sci., 54, 371-384, doi:10.1007/s13143-018-0024-0.   DOI
19 Park, O.-R., and Y.-S. Kim, 2002: A study on the verification and sensitivity test for the ACARS data. J. Korean Meteor. Soc., 38, 333-342 (in Korean with English abstract).
20 Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624-3648, doi:10.1175/JCLI-D-11-00015.1.   DOI
21 Schwartz, B., and S. G. Benjamin, 1995: A comparison of temperature and wind measurements from ACARSequipped aircraft and rawinsondes. Wea. Forecasting, 10, 528-544.   DOI
22 Ying, Y., F. Zhang, and J. L. Anderson, 2018: On the selection of localization radius in ensemble filtering for multiscale quasigeostrophic dynamics. Mon. Wea. Rev., 146, 543-560, doi:10.1175/MWR-D-17-0336.1.   DOI
23 Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.   DOI
24 Soldatenko, S., C.Thingwell, P., Steinle, and B. A. KellyGerreyn, 2018: Assessing the impact of surface and upper-air observations on the forecast skill of the ACCESS numerical weather prediction model over Australia. Atmosphere, 9, 23, doi:10.3390/atmos9010023.   DOI
25 Song, H.-J., J.-H. Ha, I.-H. Kwon, J. Kim, and J. Kwun, 2018: Multi-resolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA). Asia-Pac. J. Atmos. Sci., 54, 337-350, doi:10.1007/s13143-018-0018-y.   DOI
26 Ota, Y., J. C. Derber, E. Kalnay, and T. Miyoshi, 2013: Ensemble-based observation impact estimates using the NCEP GFS. Tellus A, 65, 20038, doi:10.3402/tellusa.v65i0.20038.   DOI