• Title/Summary/Keyword: observation learning

Search Result 635, Processing Time 0.03 seconds

The Perception of Gifted Science Teachers Regarding a Individualized Instruction for Scientifically Gifted (영재 개별화 교육에 관한 과학영재 지도교사들의 인식)

  • Kim, Su-yeon;Han, Shin;Jeong, Jinwoo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.199-216
    • /
    • 2016
  • The purpose of this study is to figure out how much gifted science education teachers in charge of the class realize the necessity of individualized curriculum and program for scientifically gifted, to find out the problems of the gifted science educational institutions from exploring them in depth in the light of the reality in the gifted science educational institutions, and to draw implications about the applicable direction of more aggressive individualized curriculum and program for scientifically gifted. I chose 15 people with the incumbent teachers who have ever taught scientifically gifted and have a degree in the gifted education or science subject education as study participants and had a depth interview with them. According to result of the study, 14 of 15 study participants recognized the necessity of individualized education in science should understand the personal requirements according to the tendency of the gifted students and should be a study led by students themselves. Of the problems in gifted science education, teachers regarded the reduction in the financial support as the biggest problem and the vocation and professionalism of teachers were referred as a very important factor. With constraints of time and space, there were plenty of opinions that can't ignore the influence of educational environment associated with the university entrance examination. There were many opinions that there is excessive expansion of the agencies and the target for gifted students, no standardized measurement tools and programs and the lack of the system for the coherent observation as a teacher. Also, the unified curriculum of gifted science education institutions were pointed out as the problem and the individualized programs which were already under way have a lot of weakness and being offered marginally. Thus, from now on, to apply for individualized education of gifted science, teachers demanded optimized education conditions and consistent policy support, and expressed the opinion that there needs of a possible continuous observation system. Besides, the curriculum and programs matched the needs of the students should be taken priority the most, and there were another answers that fellow learning within the cooperative learning can be an alternative of the individualized. Along with that, there were lots of opinions that the treatment to overcome an inferiority complex according to the individualized should be followed.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

Comparative Analysis of the New and Old Secondary School Science Textbooks (중학교 과학교과서의 비교분석)

  • Kim, Seong-Jin;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1985
  • In this study, I compared and analyzed the new and old secondary school science textbooks to find the charateristics of them and the differences between them. The results of the study are the following. Major concepts in the new textbook are almost similar to those in the old one. The-new textbook reinforces the functions of the introudction and checking the result of learning, and presents more and diverse learning materials and reduces the degree of learning difficulty by omitting the several abstract knowledges and mathematical formulas which can be understood through formal operational thinking. The results show that the new textbook is more effective in arousing student's interest and curiosity there fore it increases the efficiency of learning. But the new textbook is less suitable for inquiry because it is mainly composed of explanation and fact rather than experiment and observation. I think that this is the result from the actual approach to the real conditions of school when the curriculum was reformed and the new textbook was written.

  • PDF

Status of Brain-based Artistic Education Fusion Study - Basic Study for Animation Drawing Education (뇌기반 예술교육 융합연구의 현황 - 애니메이션 드로잉 교육을 위한 기초연구)

  • Lee, Sun Ju;Park, Sung Won
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.237-257
    • /
    • 2014
  • This study is the process of performing the interdisciplinary fusion study between multiple fields by identifying the status on the previous artistic education considering the brain scientific mechanism of image creativity and brain-based learning principles. In recent years, producing the educational methods of each field as the fusion study activities are emerging as the trend and thanks to such, the results of brain-based educational fusion studies are being presented for each field. It includes artistic fields such as music, art and dance. In other words, the perspective is that by understanding the operating principles of the brain while creativity and learning is taking place, when applying various principles that can develop the corresponding functions as a teaching method, it can effectively increase the artistic performance ability and creativity. Since the animation drawing should be able to intuitively recognize the elements of movement and produce the communication with the target beyond the delineative perspective of simply drawing the objects to look the same, it requires the development of systematic educational method including the methods of communication, elements of higher cognitive senses as well as the cognitive perspective of form implementation. Therefore, this study proposes a literature study results on the artistic education applied with brain-based principles in order to design the educational model considering the professional characteristics of animation drawing. Therefore, the overseas and domestic trends of the cases of brain-based artistic education were extracted and analyzed. In addition, the cases of artistic education studies applied with brain-based principles and study results from cases of drawing related education were analyzed. According to the analyzed results, the brain-based learning related to the drawing has shown a common effect of promoting the creativity and changes of positive emotion related to the observation, concentration and image expression through the training of the right brain. In addition, there was a case of overseas educational application through the brain wave training where the timing ability and artistic expression have shown an enhancement effect through the HRV training, SMR, Beta 1 and neuro feedback training that strengthens the alpha/seta wave and it was proposing that slow brain wave neuro feedback training contributes significantly in overcoming the stress and enhancing the creative artistic performance ability. The meaning of this study result is significant in the fact that it was the case that have shown the successful application of neuro feedback training in the environment of artistic live education beyond the range of laboratory but the use of the machine was shown to have limitations for being applied to the teaching methods so its significance can be found in providing the analytical foundation for applying and designing the brain-based learning principles for future animation drawing teaching methods.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

Counseling Case Study of a Child with Peer Confliction due to Lack of Social Skills and Impulsiveness (사회적 기술 부족과 충동성으로 인해 또래갈등이 심한 분교아동의 상담사례)

  • Lee, In-Sun
    • The Korean Journal of Elementary Counseling
    • /
    • v.5 no.1
    • /
    • pp.227-253
    • /
    • 2006
  • It seems common for students living at a small county and islands to experience psychological conflicts and be unaccustomed in the peer society because they are not familiar with peer interaction and social skills. This is a case study of L (hereinafter called L) who was grown up in the sheltered school at a small county. L was psychologically disturbed because he couldn't get along well in the transferred school. It is the reason why he had lived in the sheltered school at a small county, so he had not enough exposure to interact with peer and social skills. Sometimes he was obstinate irrationally and when he had trouble with friends, he threw something out or went out of school and tricked juniors dangerously. The fact of disperse with families, parent's indifference, and hate of older brother made L to have ill feeling against family. He had low motivation and low self confident in learning because of short attention time and accumulated poor learning progress. In this study, he was evaluated at various area, such as, intelligent, affective, personal and inter-personal, before counselling. To evaluated the effect of the counselling, K-WISC-III, KPRC, sentence filling test, social adaptation ability test, etc, were administered right after the counselling was over and 8 weeks later. For specific information gathering and analysing, observation diary and deepen counselling were accomplished by homeroom teacher, his mother, and his peers. To correct his problematic behaviors, 13 counseling sessions were accomplished for 6 months and those counselling sessions were recorded and analysed definitely. Followings are the result of this case study. First, he was recovered from the anxiety of inter-personal interaction and he started to interact with peers. The result of sac scale score of KPRC profile was lower than before as much as average student after counseling and 8 weeks later. This reveals that the distress against interpersonal relation have settled. Especially, through the result of sentence filing test, he seemed to feel attachment to peers and be positive, active in the relation of peer. For instance, he was active in the open class lesson and interacted well with peers. It could be said that he overcame the psychological distress comparing with previous time. Second, he could apologize to his peer and juniors for his fault. His attitude were well shown in the letter from an old friend at the sheltered school, average KPRC profiling score comparing with previous counseling time, and remarkable decrease of attack scale score of teacher and peer. Third, his view toward family turn out positive. He recognized his situation that he lived apart from family and even worried about his parent's financial difficulty. Through solving the confliction with his older brother, he could acquire the feeling of family reunion. Fourth, his learning motivation and self-confidence were increased. He confirmed his future positively and he might be judged more attentive because his intelligence index was higher than before as much as average student. With the main goal of this study, verification for effectiveness of counseling. understanding and helping problematic students such as L who lives at a small county and island through investigation of their real situation and problems with the method of counseling and socio-cultural analysis is worthwhile. Identification of ideal relationship with peer is related with positive self-conception, harmonic social adaptation and development of child. It is time to investigate easy adaptive in classroom and well-organised program to acquire general social skills for sheltered school students at a small county and islands.

  • PDF

Exploring the Evolution Patterns of Trading Zones Appearing in the Convergence of Teachers' Ideas: The Case Study of a Learning Community of Teaching Volunteers 'STEAM Teacher Community' (교사들의 아이디어 융합 과정에서 나타나는 교역지대의 진화과정 탐색: 자율적 학습공동체'STEAM 교사 연구회' 사례연구)

  • Lee, Jun-Ki;Lee, Tae-Kyong;Ha, Minsu
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.5
    • /
    • pp.1055-1086
    • /
    • 2013
  • The purpose of this study is to identify the formation and evolution patterns of a trading zone and to explore the difficulties teachers experience in the trading zone and their perceptions of the experience. Seven teachers involved in the 'STEAM Teacher Community' in a middle school located in the southern part of South Korea participated in this study. Participant observation and in-depth interviews were carried out, and reflective essays were collected for analysis. The results show that teachers successfully formed a trading zone to share their expertise when they developed teaching materials for the convergence of different subject matters. Moreover, such a trading zone evolved in the order of pre-trading zone, trading zone under elite control, trading zone with boundary object, and trading zone of shared mental model. The difficulties teachers experienced in the trading zone were categorized under the difference of culture and opinion across subject matters, the lack of motivation for convergence, the hegemony of convergence and far-fetched factors for convergence, and difficulty of communication due to jargons. Also teachers in this study experienced perceptual changes in the trading zone. The trading zone model drawn from the results of this study bring forth implications for voluntary teachers' learning community activity for the convergence of different subject matters.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data (부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출)

  • Park, Seohui;Kim, Miae;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.321-335
    • /
    • 2021
  • Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.