Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.2.11

Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data  

Park, Seohui (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Kim, Miae (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Im, Jungho (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.37, no.2, 2021 , pp. 321-335 More about this Journal
Abstract
Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ㎛, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis(PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements.
Keywords
Particulate Matter; $PM_{10}$; $PM_{2.5}$; Machine learning; AOD; GOCI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kukkonen, J., M. Pohjola, R.S. Sokhi, L. Luhana, N. Kitwiroon, L. Fragkou, M. Rantamaki, E. Berge, V. Odegaard, and L.H. Slordal, 2005. Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo, Atmospheric Environment, 39(15): 2759-2773.   DOI
2 Lee, H.J., R.B. Chatfield, and A.W. Strawa, 2016. Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS deep blue AOD and land use regression in California, United States, Environmental Science & Technology, 50(12): 6546-6555.   DOI
3 Lee, P.S.-H., J.C. Park, and J.-Y. Seo, 2020. Estimation of ambient PM10 and PM2.5 concentrations in Seoul, South Korea, using empirical models based on MODIS and Landsat 8 OLI imagery, Korean Journal of Agricultural Science, 47(1): 59-66 (in Korean with English abstract).   DOI
4 Lim, H., M. Choi, M. Kim, J. Kim, and P. Chan, 2016. Retrieval and validation of aerosol optical properties using Japanese next generation meteorological satellite, Himawari-8, Korean Journal of Remote Sensing, 32(6): 681-691 (in Korean with English abstract).   DOI
5 Liu, Y., J.A. Sarnat, V. Kilaru, D.J. Jacob, and P. Koutrakis, 2005. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing, Environmental Science & Technology, 39(9): 3269-3278.   DOI
6 Lv, Z., W. Wei, S. Cheng, X. Han, and X. Wang, 2020, Meteorological characteristics within boundary layer and its influence on PM2.5 pollution in six cities of North China based on WRF-Chem, Atmospheric Environment, 228: 117417.   DOI
7 Krasnov, H., I. Katra, and M. Friger, 2016. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015, Environmental Pollution, 213: 36-42.   DOI
8 Ma, Z., X. Hu, L. Huang, J. Bi, and Y. Liu, 2014. Estimating ground-level PM2.5 in China using satellite remote sensing, Environmental Science & Technology, 48(13): 7436-7444.   DOI
9 Park, S., M. Shin, J. Im, C.-K. Song, M. Choi, J. Kim, S. Lee, R. Park, J. Kim, and D.-W. Lee, 2019. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea, Atmospheric Chemistry and Physics, 19(2): 1097-1113.   DOI
10 Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, 2011. Scikit-learn: Machine learning in Python, The Journal of Machine Learning Research, 12: 2825-2830.
11 Pope III, C.A., M. Ezzati, and D.W. Dockery, 2009, Fine-particulate air pollution and life expectancy in the United States, New England Journal of Medicine, 360(4): 376-386.   DOI
12 Qadeer, K. and M. Jeon, 2019. Prediction of PM10 Concentration in South Korea Using Gradient Tree Boosting Models, Proc. of 2019 the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, CA, Aug. 26-28, pp. 1-6.
13 Rodriguez, S., X. Querol, A. Alastuey, G. Kallos, and O. Kakaliagou, 2001. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain, Atmospheric Environment, 35(14): 2433-2447.   DOI
14 She, Q., M. Choi, J.H. Belle, Q. Xiao, J. Bi, K. Huang, X. Meng, G. Geng, J. Kim, and K. He, 2020. Satellite-based estimation of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze River Delta, China, Chemosphere, 239: 124678.   DOI
15 Soni, M., S. Payra, and S. Verma, 2018. Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters, Atmospheric Pollution Research, 9(5): 949-958.   DOI
16 Xu, Y., H.C. Ho, M.S. Wong, C. Deng, Y. Shi, T.-C. Chan, and A. Knudby, 2018. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5, Environmental Pollution, 242: 1417-1426.   DOI
17 Sorek-Hamer, M., I. Kloog, P. Koutrakis, A.W. Strawa, R. Chatfield, A. Cohen, W.L. Ridgway, and D.M. Broday, 2015. Assessment of PM2.5 concentrations over bright surfaces using MODIS satellite observations, Remote Sensing of Environment, 163: 180-185.   DOI
18 Stirnberg, R., J. Cermak, S. Kotthaus, M. Haeffelin, H. Andersen, J. Fuchs, M. Kim, J.-E. Petit, and O. Favez, 2021. Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning, Atmospheric Chemistry and Physics, 21(5): 3919-3948.   DOI
19 Wang, S., W. Yuan, and K. Shang, 2006. The impacts of different kinds of dust events on PM10 pollution in northern China, Atmospheric Environment, 40(40): 7975-7982.   DOI
20 Zhan, Y., Y. Luo, X. Deng, H. Chen, M.L. Grieneisen, X. Shen, L. Zhu, and M. Zhang, 2017. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm, Atmospheric Environment, 155: 129-139.   DOI
21 Zhang, T., W. He, H. Zheng, Y. Cui, H. Song, and S. Fu, 2021. Satellite-based ground PM2.5 estimation using a gradient boosting decision tree, Chemosphere, 268: 128801.   DOI
22 Gupta, P. and S.A. Christopher, 2009a. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach, Journal of Geophysical Research: Atmospheres, 114(D14205): 1-13.
23 Friedman, J.H., 2002. Stochastic gradient boosting, Computational Statistics & Data Analysis, 38(4): 367-378.   DOI
24 Geng, G., Q. Zhang, R.V. Martin, A. van Donkelaar, H. Huo, H. Che, J. Lin, and K. He, 2015. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model, Remote sensing of Environment, 166: 262-270.   DOI
25 Ghotbi, S., S. Sotoudeheian, and M. Arhami, 2016. Estimating urban ground-level PM10 using MODIS 3 km AOD product and meteorological parameters from WRF model, Atmospheric Environment, 141: 333-346.   DOI
26 Gui, K., H. Che, Z. Zeng, Y. Wang, S. Zhai, Z. Wang, M. Luo, L. Zhang, T. Liao, and H. Zhao, 2020. Construction of a virtual PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model, Environment International, 141: 105801.   DOI
27 Guo, B., D. Zhang, L. Pei, Y. Su, X. Wang, Y. Bian, D. Zhang, W. Yao, Z. Zhou, and L. Guo, 2021. Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017, Science of The Total Environment, 778: 146288.   DOI
28 Du, C., S. Liu, X. Yu, X. Li, C. Chen, Y. Peng, Y. Dong, Z. Dong, and F. Wang, 2013. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi'an, central China, Aerosol and Air Quality Research, 13(5): 1598-1607.   DOI
29 Gupta, P. and S.A. Christopher, 2009b. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach, Journal of Geophysical Research: Atmospheres, 114(D20205): 1-14.
30 Chen, Z.-Y., T.-H. Zhang, R. Zhang, Z.-M. Zhu, J. Yang, P.-Y. Chen, C.-Q. Ou, and Y. Guo, 2019. Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China, Atmospheric Environment, 202: 180-189.   DOI
31 Jerrett, M., M.C. Turner, B.S. Beckerman, C.A. Pope III, A. Van Donkelaar, R.V. Martin, M. Serre, D. Crouse, S.M. Gapstur, and D. Krewski, 2017. Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates, Environmental Health Perspectives, 125(4): 552-559.   DOI
32 Jethva, H., O. Torres, and C. Ahn, 201., Global assessment of OMI aerosol single-scattering albedo using ground-based AERONET inversion, Journal of Geophysical Research: Atmospheres, 119(14): 9020-9040.   DOI
33 Jin, K., 2018. LEO and GEO satellite programs for space-borne measurement of aerosol, Current Industrial and Technological Trends in Aerospace, 16(1): 53-62.
34 Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, 2017, Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural Information Processing Systems, 30: 3146-3154.
35 Kloog, I., M. Sorek-Hamer, A. Lyapustin, B. Coull, Y. Wang, A.C. Just, J. Schwartz, and D.M. Broday, 2015. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data, Atmospheric environment, 122: 409-416.   DOI