• Title/Summary/Keyword: objective function Constraint

Search Result 277, Processing Time 0.025 seconds

OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE ROBUST OPTIMIZATION PROBLEMS

  • Kim, Moon Hee
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.371-377
    • /
    • 2015
  • We consider a nondifferentiable robust optimization problem, which has a maximum function of continuously differentiable functions and support functions as its objective function, continuously differentiable functions as its constraint functions. We prove optimality conditions for the nondifferentiable robust optimization problem. We formulate a Wolfe type dual problem for the nondifferentiable robust optimization problem and prove duality theorems.

OPTIMALITY AND DUALITY IN NONSMOOTH VECTOR OPTIMIZATION INVOLVING GENERALIZED INVEX FUNCTIONS

  • Kim, Moon-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1527-1534
    • /
    • 2010
  • In this paper, we consider nonsmooth optimization problem of which objective and constraint functions are locally Lipschitz. We establish sufficient optimality conditions and duality results for nonsmooth vector optimization problem given under nearly strict invexity and near invexity-infineness assumptions.

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

A Constraint Programming-based Automated Course Timetabling System

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.27-34
    • /
    • 2019
  • The course timetabling problem is a kind of very complex combinatorial optimization problems, which is known as an NP-complete problem. Sometimes a given course timetabling problem can be accompanied by many constraints. At this time, even if only one constraint is violated, it can be an infeasible timetable. Therefore, it is very difficult to make an automated course timetabling system for a complex real-world course timetabling problem. This paper introduces an automated course timetabling system using constraint programming. The target problem has 26 constraints in total, and they are expressed as 24 constraints and an objective function in constraint programming. Currently, we are making a timetable through this system and applying the result to the actual class. Members' satisfaction is also much higher than manual results. We expect this paper can be a guide for making an automated course timetabling system.

Combined Design of Robust Control System and Structure System (강인성 제어 시스템과 구조 시스템의 통합 최적 설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

Design of a Robust Controller Using Genetic Algorithms and LMI Design Method (유전자 알고리즘과 LMI 설계 방법을 이용한 강인 제어기의 설계)

  • Lee, Moon-Noh;Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.619-624
    • /
    • 2011
  • This paper presents a controller design method for a robust control problem with multiple constraints using genetic algorithms and LMI design method. A robust $H_{\infty}$ constraint with loop shaping and pole placement is used to address disturbance attenuation with error limits and desired transient specifications, in spite of the plant uncertainties and disturbances. In addition, a loop gain constraint is considered so as not to enlarge the loop gain unnecessarily. The robust $H_{\infty}$ constraint and pole placement constraint can be expressed in terms of two matrix inequalities and the loop gain constraint can be considered as an objective function so that genetic algorithms can be applied. Accordingly, a robust controller can be obtained by integrating genetic algorithms with LMI approach. The proposed controller design method is applied to a track-following system of an optical disk drive and is evaluated through simulation results.

INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS

  • Sach, Pham-Huu;Kim, Do-Sang;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.241-258
    • /
    • 2006
  • This paper gives conditions under which necessary optimality conditions in a locally Lipschitz program can be expressed as the invexity of the active constraint functions or the type I invexity of the objective function and the constraint functions on the feasible set of the program. The results are nonsmooth extensions of those of Hanson and Mond obtained earlier in differentiable case.

A Study on Scheduling Considering Delivery and Production Efficiency in the JIT Systems (적시생산시스템에서 납기와 생산효율성을 고려한 Scheduling)

  • Kim, Jung
    • Journal of Industrial Convergence
    • /
    • v.5 no.2
    • /
    • pp.21-32
    • /
    • 2007
  • This paper deals with the sequencing problem in the operation of the manufacturing systems with the constraint of buffer capacity. Some of studies for this theme have been progressed for several years. And then most of them considered only one objective, such as maximum lateness, machine utilization, makespan, mean flowtime and so on. This study deal with two objectives of the delivery for customers and the idle time of machines for producers. For the decision of sequence, the utility function is used. The developed heuristic algorithm presents a good solution. Through a numerical example, the procedures of the job sequencing is explained.

  • PDF

Opposition Based Differential Evolution Algorithm for Dynamic Economic Emission Load Dispatch (EELD) with Emission Constraints and Valve Point Effects

  • Thenmalar, K.;Ramesh, S.;Thiruvenkadam, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1508-1517
    • /
    • 2015
  • Optimal Power dispatch is the short-term decision of the optimal output of a number of power generation facilities, to meet the system demand, with the objective of Power dispatching at the lowest possible cost, subject to transmission lines power loss and operational constraints. The operational constraint includes power balance constraint, generator limit constraint, and emission dispatch constraint and valve point effects. In this paper, Opposition based Differential Evolution Algorithm (ODEA) has been proposed to handle the objective function and the operational constraints simultaneously. Furthermore, the valve point loading effects and transmission lines power loss are also considered for the efficient and effective Power dispatch. The ODEA has unique features such as self tuning of its control parameters, self acceleration and migration for searching. As a result, it requires very minimum executions compared with other searching strategies. The effectiveness of the algorithm has been validated through four standard test cases and compared with previous studies. The proposed method out performs the previous methods.

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.