• Title/Summary/Keyword: object region

Search Result 1,000, Processing Time 0.027 seconds

Content-based Image Retrieval using Variable Region Color (가변 영역 색상을 이용한 내용기반 영상검색)

  • Kim Dong-Woo;Song Young-Jun;Kwon Dong-Jin;Ahn Jae-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.367-372
    • /
    • 2005
  • In this paper, we proposed a method of content-based image retrieval using variable region. Content-based image retrieval uses color histogram for the most part. But the existing color histogram methods have a disadvantage that it reduces accuracy because of quantization error and absence of spatial information. In order to overcome this, we convert color information to HSV space, quantize hue factor being pure color information, and calculate histogram of the factor. On the other hand, to solve the problem of the absence of spatial information, we select object region in consideration of color feature and region correlation. It maintains the size of region in the selected object region. But non-object region is integrated in one region. After of selection variable region, we retrieve using color feature. As the result of experimentation, the proposed method improves 10$\%$ in average of precision.

  • PDF

Real-Time Container Shape and Range Recognition for Implementation of Container Auto-Landing System

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.794-803
    • /
    • 2009
  • In this paper, we will present a container auto-landing system, the system use the stereo camera to measure the container depth information. And the container region can be detected by using its hough line feature. In the line feature detection algorithm, we will detect the parallel lines and perpendicular lines which compose the rectangle region. Among all the candidate regions, we can select the region with the same aspect-ratio to the container. The region will be the detected container region. After having the object on both left and right images, we can estimate the distance from camera to object and container dimension. Then all the detect dimension information and depth inform will be applied to reconstruct the virtual environment of crane which will be introduce in this paper. Through the simulation result, we can know that, the container detection rate achieve to 97% with simple background. And the estimation algorithm can get a more accuracy result with a far distance than the near distance.

  • PDF

Region-based ICP algorithm in TKR operation (인공무릎관절 수술에서의 영역기반 ICP 알고리즘)

  • Key Jae-Hong;Lee Moon-Kyu;Lee Chang-Yang;Kim Dong-M.;Yoo Sun-K.;Choi Kui-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.185-186
    • /
    • 2006
  • Image Guided Surgery(IGS) system has been developed to provide exquisite and objective information to surgeons for surgical operation process. It is necessary that registration technique is important to match between 3D image model reconstructed from image modalities and the object operated by surgeon. Majority techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to its invasive protocol inserting fiducial markers in patient's bone. Therefore, shape-based registration technique using geometric characteristics of the object has been invested to improve the limitation of IGS system. During Total Knee Replacement(TKR) operation, it is challenge to register with high accuracy by using shape-based registration because the area to acquire sample data from knee is limited. We have developed region-based 3D registration technique based on anatomical landmarks on the object and this registration algorithm was evaluated in femur model. It was found that region-based algorithm can improve the accuracy in 3D registration. We expect that this technique can efficiently improve the IGS system.

  • PDF

Tongue Image Segmentation via Thresholding and Gray Projection

  • Liu, Weixia;Hu, Jinmei;Li, Zuoyong;Zhang, Zuchang;Ma, Zhongli;Zhang, Daoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.945-961
    • /
    • 2019
  • Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue body), which plays a key role in the process of manufacturing an automated tongue diagnosis system. It is still challenging, because there exists the personal diversity in tongue appearances such as size, shape, and color. This paper proposes an innovative segmentation method that uses image thresholding, gray projection and active contour model (ACM). Specifically, an initial object region is first extracted by performing image thresholding in HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. Then, a gray projection technique is used to determine the upper bound of the tongue body root for refining the initial object region. Finally, the contour of the refined object region is smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images showed that the proposed method obtained more accurate segmentation results than other available state-of-the-art methods.

Region Based Object Tracking with Snakes (스네이크를 이용한 영역기반 물체추적 알고리즘)

  • Kim, Young-Sub;Han, Kyu-Bum;Baek, Yoon-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.307-312
    • /
    • 2001
  • In this paper, we proposed the object-tracking algorithm that recognizes and estimates the any shaped and size objects using vision system. For the extraction of the object from the background of the acquired images, spatio-temporal filter and signature parsing algorithm are used. Specially, for the solution of correspondence problem of the multiple objects tracking, we compute snake energy and position information of the target objects. Through the real-time tracking experiment, we verified the effectiveness of the suggested tracking algorithm.

  • PDF

Object Extraction technique Using Belief Propagation Stereo Algorithm of Bidirectional Search based on Brightness (밝기기반 양방향 탐색기법의 신뢰전파 스테레오 알고리즘을 이용한 물체 추출 기법)

  • Choi, Young-Seok;Choi, Kyung-Seok;Kang, Hyun-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.313-314
    • /
    • 2007
  • In this paper, we suggest robust object extraction algorithm taking advantage of efficient Belief Propagation method. It does not get a disparity information because of uniform region and occlusion region etc. on initial depth map that use forward direction disparity information although is object area. Therefore, We run parallel backward disparity information and brightness information for certain object extraction.

  • PDF

Effective Object Recognition based on Physical Theory in Medical Image Processing (의료 영상처리에서의 물리적 이론을 활용한 객체 유효 인식 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2012
  • In medical image processing field, object recognition is usually processed based on region segmentation algorithm. Region segmentation in the computing field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective region segmentation method based on R2-map information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2-map as seed points for 2D region growing and final boundary correction to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5%, which was higher than the accuracy of conventional exist region segmentation algorithm, was obtained.

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images (사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용)

  • Kim, Jungmoon;Choi, Jee Woong;Kwon, Hyuckjong;Oh, Raegeun;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.