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Abstract 

 
Tongue diagnosis is one of the most important diagnostic methods in Traditional Chinese 
Medicine (TCM). Tongue image segmentation aims to extract the image object (i.e., tongue 
body), which plays a key role in the process of manufacturing an automated tongue diagnosis 
system. It is still challenging, because there exists the personal diversity in tongue 
appearances such as size, shape, and color. This paper proposes an innovative segmentation 
method that uses image thresholding, gray projection and active contour model (ACM). 
Specifically, an initial object region is first extracted by performing image thresholding in 
HSI (i.e., Hue Saturation Intensity) color space, and subsequent morphological operations. 
Then, a gray projection technique is used to determine the upper bound of the tongue body 
root for refining the initial object region. Finally, the contour of the refined object region is 
smoothed by ACM. Experimental results on a dataset composed of 100 color tongue images 
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showed that the proposed method obtained more accurate segmentation results than other 
available state-of-the-art methods.  

Keywords: HSI; image thresholding; gray projection; tongue image segmentation 

 

1. Introduction  

Tongue diagnosis [1-3] is popular in Traditional Chinese Medicine (TCM) due to its 

effectiveness, painlessness, and lack of side-effects. In China, tongue diagnosis has gone 
through over 3000 years, and its practitioners infer a subject’s health status from tongue 
appearances, such as the color, texture, and coating. TCM has eight famous tongue diagnosis 
rules [3], which reveal that different tongue body sub-regions reflect different human organs’ 
health statuses. Furthermore, the tongue appearance is an important index to reflect a 
subject’s health condition. For instance, the TCM syndrome, which depicted by the tongue 
coating’s color and texture features, often reflects human health status [4].  

Modern Western Medicine gradually regards the human tongue as an extension of the 
upper gastrointestinal tract indicating the human health status. Accordingly, some 
researchers [5-6] have also agreed that tongue diagnosis is beneficial for making clinical 
decision [7]. For instance, some researchers took tongue coating as a risk index for edentate 
patients’ aspiration pneumonia, as it was closely related to many viable salivary bacteria [8]. 
Moreover, the study in [9] takes tongue amyloidosis as a possible diagnostic indicator for the 
disease of plasmacytoma. An increasing number of researches endeavour to explore the 
potential of tongue diagnosis to infer systemic disorders. 

However, conventional tongue diagnosis often depends on the experience of practitioners, 
which is subjective, time-consuming, and instable. Nowadays, several automated 
computer-aided tongue diagnosis systems [10-12] have been developed by using digital 
image processing [13-14] and pattern recognition techniques [15]. These automated systems 
usually first extract the image object and its features, and then feed into a designed classifier 
for tongue diagnosis. Tongue image segmentation is a prerequisite and also crucial for 
developing automated tongue diagnosis systems. Several methods [16-19] have been 
presented for tongue image segmentation in the past few decades. However, it is still 
challenging due to the personal diversity in tongue appearances.  

Among the existing segmentation methods, ACM (i.e., snake)-based methods are popular. 
ACM [20-22] is a popular deformable shape model for contour extraction, which evolves a 
given initial contour to the true object contour. The determination of the initial object 
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contour plays a key role in ACM-based tongue image segmentation. When the initial contour 
contains strong fake object contour, it is difficult to converge to the true object contour. 
Motivated by our observation that there is an obvious hue difference between tongue body 
pixels and their neighboring face pixels, we proposed two tongue image segmentation 
methods [23-24]. The first method [23] published on the conference is a preliminary version 
of the second method [24] that is published on the journal. The method in [23] first maps an 
image from RGB to HSI, and conducts image thresholding on the hue component to extract 
an initial object region, and then performs image thresholding on the red component to find 
the gap region between the upper lip and the tongue body root, and finally uses the gap 
region to remove fake object region and obtain final tongue body region. On the basis of the 
first method [23], the second method [24] can more accurately find the above gap region by 
adaptively selecting one of two image thresholding results on the red component. Motivated 
by both methods and ACM-based methods, we propose this work to improve tongue image 
segmentation accuracy. Differences between this work and our previous works [23-24] are as 
follows: (1) this work simplifies the hue component transformation for parameter reducing; 
(2) this work refines the initial object region by gray projection based determination of the 
tongue body root’s upper bound instead of image thresholding based determination of the 
above gap region; (3) this work smoothes the tongue body contour via ACM. Specifically, in 
the proposed method, an initial object region is first extracted via image thresholding on a 
transformed hue component, and subsequent morphological operations. Then, a gray 
projection technique is used to determine the upper bound of the tongue body root for 
refining the initial object region. Finally, the initial object contour is smoothed by ACM. 
Experiments on a dataset composed of 100 color tongue images with personal diversity in 
tongue appearances showed that the proposed method improved tongue image segmentation 
accuracy. 

The rest of this article is organized as follows. We first review related works in Section 2, 
and then introduce the theory and implementation of the proposed method in Section 3. We 
report experimental results in Section 4, and conclude in Section 5. 

 

2. Related works  

Due to the above challenges associated with tongue image segmentation, single conventional 
image processing techniques, such as edge detection and image thresholding, usually fail to 
achieve a satisfactory segmentation result. To improve segmentation accuracy, several 
hybrid methods have been proposed during the past few decades. ACM-based methods are 
the most popular ones. Studies of ACM-based methods have the following two steps, i.e., the 
determination of the initial object contour, and the object contour evolution. This paper 
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focuses on the initial object contour determination. When determining the initial object 
contour, existing studies have mainly used several low-level image processing techniques, 
such as prior shape-based ellipse detection, edge detection, region segmentation, and feature 
point detection.  

For example, the bi-elliptical deformable contour extraction method, termed BEDC [15], 
uses the tongue body shape prior to determine the initial object contour for image 
segmentation. Specifically, BEDC [15] first defines a specific deformable template, termed 
BEDT, to roughly describe the tongue body, and then obtains the initial tongue body contour 
by minimizing the BEDT energy function. Finally, a modified ACM, that replaces 
conventional internal force with the template force, is used to evolve the initial contour and 
obtain the final segmentation result. BEDC simply uses two semi-ellipses to model the 
tongue body shape. However, large personal variation in tongue body shape can result in the 
initial tongue body contour obtained by BEDC containing undesirable strong edges from 
neighboring tissues, thus providing a tongue body contour that does not reflect the real 
tongue body contour.  

Zhang et al. [16] combined polar edge detection with ACM to achieve tongue image 
segmentation. In detail, this method first detects image boundaries in polar coordinate and 
removes fake object boundaries with the help of an edge mask, and then performs local 
image thresholding and morphological operations on the edge removal result to obtain a 
binary polar edge image, and finally adopts a heuristic method to obtain the initial object 
contour for ACM-based contour smoothing. Unfortunately, there exist two disadvantages in 
this method: 1) there is no common edge mask for removing fake object boundaries, because 
tongue body size and shape vary from person to person; 2) the edge filtering scheme, which 
combines a Sobel edge detector, a Gaussian filter, and image thresholding with 
morphological operations, fails to remove long fake object boundaries. Further, the Gaussian 
filter often weakens the true tongue body contour, thus increasing the difficulty of tongue 
image segmentation.  

Ning et al. [17] proposed a method called GVFRM, which combined gradient vector flow, 
region merging, with ACM to accomplish the task of tongue image segmentation. In detail, 
GVFRM first suppresses both noise and trivial image details by modifying the conventional 
GVF as a scalar diffusion equation, then splits the image into many small regions by a 
watershed algorithm, and finally utilizes region merging to determine the initial object 
contour for subsequent contour smoothing. However, this method also has two disadvantages: 
1) it easily generates segmentation error on the object regions near image borders, because 
the markers of these object regions are wrongly assigned as background under the invalid 
assumption that the tongue body and the background should be at the image center and the 
image borders, respectively; 2) the modified GVF may weaken the true tongue body contour 
when it suppresses image noise and trivial image details.  
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Shi et al. presented two ACM-based methods briefly called C2G2F [18] and DGF [19] for 
tongue image segmentation. In detail, C2G2F [18] first detects four feature points of the 
tongue body to determine the initial object contour, and divides the initial contour into the 
upper and the lower parts. Next, the upper and the lower halves are evolved to the true object 
contour by the parameterized GVF snake model and the geodesic ACM, respectively. Finally, 
the two half profiles are assembled to obtain the final object contour. However, C2G2F may 
miss partial feature points, or detect undesirable points. To resolve this issue, Shi et al. [19] 
developed an upgraded method called DGF. In detail, DGF first roughly localizes the image 
window of the tongue body via a salient object detector [25], then detects four feature points 
within the image window and follows the idea of C2G2F [18] to find the initial object 
contour. Next, DGF uses the geodesic ACM and the geo-GVF ACM to evolve the lower and 
the upper half contours to the true object contour, respectively. Finally, both half contours 
are assembled to form the final object contour. However, DGF still has similar limitation to 
C2G2F. 

  

 

 

 

 

 

  

 

 

  

 Fig. 1. The flowchart of the proposed method. 

3. The proposed method  

It is well known that ACM-based methods are usually sensitive to the initial object contour. 
When the initial object contour contains strong fake object contour, it is difficult to converge 
to the true object contour. To improve the segmentation accuracy, we focused on how to 
obtain an initial object contour that is close to the true tongue body contour. After exploring 
the characteristic of the hue component, we present a new segmentation method based on 
image thresholding, gray projection, and ACM. The flowchart of the proposed method is 
shown in Fig. 1. Our contributions are as follows. 
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(1) After further exploring our revealed image characteristic that hue values of the tongue 
body pixels and the upper lip pixels usually are higher or lower than those of their 
neighboring pixels, we presented a simplified hue component transformation scheme that 
can reduce the parameter in the proposed algorithm. After performing this scheme, both the 
tongue body pixels and the upper lip pixels usually have higher hue values than their 
neighboring pixels. We used the transformed hue values to find the initial object region. 

(2) We introduced the gray projection technique to refine the initial object region and 
obtain the initial object contour, which is smoothed by ACM. 

3.1 Extraction of the initial object region 

In existing ACM-based methods, the initial object region and its corresponding contour 
are usually extracted by using image processing techniques, such as prior shape based ellipse 
detection [15], edge detection [16], region segmentation [17], and feature point detection 
[18-19]. Differing from these methods, we extracted the initial object region more stably and 
accurately by image thresholding on the transformed hue values. The detailed process is as 
follows: 

(1) Color space transformation: an image is transformed from RGB to HSI via the 
following equations:  

𝐻 = � 𝜃, 𝐺 ≥ 𝐵
𝜃 − 2π, 𝐺 < 𝐵

�                           (1) 

𝑆 = 1− 3
𝑅+𝐺+𝐵

min{𝑅,𝐺,𝐵},                        (2) 

 𝐼 = 1
3

(𝑅 + 𝐺 + 𝐵),                           (3) 

where 

𝜃 = arccos � [(𝑅−𝐺)+(𝑅−𝐵)]/2
[(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)]1/2�.                    (4) 

Taking Fig. 1(a) as an example, its hue component is shown in Fig. 1(b). This figure 
explores an image characteristic that the tongue body pixels and the upper lip pixels are 
usually brighter or darker than their neighboring pixels, where brighter pixels have higher 
hue values. Based on the image characteristic, we will perform the hue component 
transformation and image thresholding in the next two steps to extract the initial object 
region. 

(2) Hue component transformation: the image hue component is transformed as 
𝐻′(𝑖, 𝑗) = max{𝐻(𝑖, 𝑗),𝐻𝑚𝑎𝑥 − 𝐻(𝑖, 𝑗)},               (5) 

where Hmax indicates the maximum hue value in the image, and (i, j) is the pixel coordinate. 
In comparison with the hue component transformation in [23-24], here, we simplify the 
transformation and reduce one parameter. Fig. 1(c) shows the transformed hue component of 
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Fig. 1(a). Fig. 1(c) demonstrates that the transformed hue values of most tongue body pixels 
and upper lip pixels are higher than those of their neighboring pixels. In the next step, we 
will perform image thresholding to extract the initial object region. 

(3) Image thresholding: an image thresholding on the transformed hue component is 
performed to obtain an image binarization result:  

𝐵(𝑖, 𝑗) = �1, if 𝐻′(𝑖, 𝑗) > 𝑇
0, otherwise

�                       (6) 

where 
𝑇 = 𝑉𝐻′(𝛼𝑁).                            (7) 

In Eq. (7), VH’ indicates the sorted vector of H’ with descending order, N is the total number 
of pixels, and α is a parameter controlling the ratio of object pixels in B. The image 
binarization result of Fig. 1(c) is shown in Fig. 1(d). 

(4) Extraction of the initial object region: the proposed method finds the maximum white 
region in B, and successively performs three morphological operations (i.e., “imdilate”, 
“imfill”, and “imerode”) to refine it as the initial object region shown in 𝐵�. The structural 
elements used in “imdilate” and “imerode” are of shape “disk” and radius “1” as shown in 
Fig. 2. Because the tongue body shape is similar to a disk, the structural element adopts the 
shape “disk”. In addition, Section 4.3 will discuss the impact of the radius “r” of the 
structural element on segmentation accuracy of our algorithm, and will explain why the 
radius should be set to 1 in our algorithm. The extracted initial object region is exhibited in 
Fig. 1(e). 

0 1 0 

1 1 1 

0 1 0 

Fig. 2. Structural element of shape “disk” and radius “1”. 
 

 
 
  
 
  

Fig. 3. intermediate results of the proposed method when refining the initial object region.  
(a) Original image, (b) the initial object region, (c) (a) with a green line indicating our 
determined upper bound of the object, (d) the refined object region, (e) the object contour. 

 
 

(d) (e) (a) (b) (c) 
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3.2 Refinement of the initial object region 

When extracting the initial object region, the proposed method is prone to 
misclassification of the upper lip and the gap region between the upper lip and the tongue 
body root. To resolve this issue, we introduce the gray projection technique [26] to find the 
upper bound of the tongue body root, and employ the bound to remove the upper lip and the 
gap region. The detailed process is as follows: 

(1) Determination of the upper bound of the tongue body root: specifically, we first find 
the locations of object pixels in the initial object region extraction result, i.e., 𝐵�. Then, we 
take the red component of a tongue image as a gray image, and calculate the average gray 
value of the object pixels on each image row containing object pixels. Finally, we find the 
row with the lowest average gray value among the image rows containing object pixels, and 
this is considered as the upper bound of the tongue body root. If there are two or multiple 
image rows with the same lowest average gray value, we take the image row with the 
maximum row number as the upper bound. Taking the subject in Fig. 1 as an example, Fig. 
3(a) and Fig. 3(b) again show the original tongue image and the extracted initial object 
region. Fig. 3(c) shows the location of the upper bound using a green line on the original 
image. From Fig. 3(c), it can be observed that the determined upper bound is very close to 
the root of the true tongue body. 

(2) Refinement of the initial object region: we first remove the white pixels on the image 
rows above the upper bound from the image binarization result 𝐵�. This may result in the 
sole white region in 𝐵� becoming two or multiple white regions. Therefore, we need to 
choose the largest white region as the refined object region. Fig. 3(d) and Fig. 3(e) show the 
refined object region and its corresponding object contour. From Fig. 3(e), it can be observed 
that the object region is effectively refined. 

The underlying principle of the above refinement method is that the above gap region is 
usually darker than the tongue body and the upper lip. Accordingly, transitional object pixels 
near the tongue body root are darker than other object pixels. Therefore, among the image 
rows containing object pixels, the image row with the lowest average gray value can be 
taken as the upper bound of the tongue body root.  

 

3.3 ACM-based object contour smoothing  

After refining the initial object region, the boundary of the refined object region is used as 
the initial object contour for subsequent ACM-based contour smoothing. The same ACM [22] 
used in GVFRM [17] is utilized to smooth the initial object contour. To validate the 
effectiveness of ACM for contour smoothing, Fig. 4 shows the initial object contour and the 
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smoothed contour. Obviously, the refined object contour is smoother than the initial object 
contour. 

 

 

 

Fig. 4. Smoothed result of the initial object contour.  
(a) Original image, (b) initial contour, (c) smoothed contour. 

4. Experimental results 

To evaluate segmentation performance of different methods, extensive experiments were 
conducted on a dataset composed of 100 color tongue images with the sizes of 110×130. 
First, qualitative comparisons between the proposed method and three state-of-the-art 
methods (i.e., GVFRM [17], C2G2F [18], and DGF [19]) were performed on eight 
representative tongue images. Then, quantitative comparisons on the entire tongue image 
dataset were evaluated by using four common image classification measures, i.e., 
misclassification error (ME) [27], false positive rate (FPR), false negative rate (FNR) [28], 
and kappa index (KI) [29]. ME measures the percentage of background pixels erroneously 
classified into foreground (i.e., object), and conversely, foreground pixels erroneously 
assigned to background. FPR and FNR measure classification error in detail. FPR measures 
the rate of the number of background pixels misclassified into foreground to the total number 
of background pixels in the manual ideal segmentation result (ground truth). FNR measures 
the rate of the number of foreground pixels misclassified into background to the total number 
of foreground pixels in the ground truth. FPR and FNR indicate over-segmentation and 
under-segmentation, respectively. KI measures the ratio of overlapping foreground area 
between the automatic segmentation result and the ground truth. The definitions of ME, FPR, 
FNR, and KI are as follows: 
 

ME = 1 − |𝐵𝑚∩𝐵𝑎|+|𝐹𝑚∩𝐹𝑎|
|𝐵𝑚|+|𝐹𝑚| ,                           (8) 

         FPR = |𝐵𝑚∩𝐹𝑎|
|𝐵𝑚| ,                               (9) 

     FNR = |𝐹𝑚∩𝐵𝑎|
|𝐹𝑚| ,                              (10) 



954                              Weixia Liu et al.: Tongue Image Segmentation via Thresholding and Gray Projection 

KI = 2 |𝐹𝑚∩𝐹𝑎|
|𝐹𝑚|+|𝐹𝑎|,                             (11) 

 
where Bm and Ba indicate background of the ground truth and a certain method’s 
segmentation result, respectively; Fm and Fa are their respective foreground; and |.| is the 
cardinality of a set. The four measurements range between 0 and 1. The lower the values of 
ME, FPR, and FNR, the better the segmentation. And conversely, the higher the value of KI, 
the better the segmentation. 

In our experiments, the parameters α and r in the proposed method were set to 0.3 and 1, 
respectively. For GVFRM [17], we set the optimal iteration number of GVF-based image 
diffusion corresponding to the highest average KI value [29]. Other parameters of GVFRM 
were set according to the literature [17]. Parameters of C2G2F [18] and DGF [19] were in 
accordance with their own literatures. 

 

4.1 Results of qualitative evaluation 

Fig. 5 exhibits the segmentation results of the four methods on the eight representative 
tongue images with personal diversity in tongue apperances including shape, size, color, 
texture, and coating. Among these methods, GVFRM [17] achieves a good segmentation 
only on the 4th image (i.e., Fig. 5(d)), but generates misclassification on the other images. In 
detail, under-segmentation happens to Figs. 5(a)-(b), (e)-(f), and (h) ; and over-segmentation 
happens to Figs. 5(a)-(e) and (g). Both C2G2F [18] and DGF [19] generate misclassification 
on most images. For C2G2F, under-segmentation happens to Figs. 5(a)-(b) and (g), and 
over-segmentation happens to Figs. 5(a)-(h). Similarly, for DGF, under-segmentation 
happens to Figs. 5(a) and (g), and over-segmentation happens to Figs. 5(a)-(h). In general, 
DGF alleviates the degree of over-segmentation as compared to C2G2F. Among the four 
methods, our propposed method obtains the best segmentation result on each representative 
image, and our object contours are the closest to the true tongue body contours. This group 
of experiments demonstrates superiority of our proposed method over other three methods. 
However, our segmentation results shown in Figs. 5(b)-(c) and (g)-(h) still have some 
over-segmentation, which will be improved in our future work. 
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Fig. 5. Segmentation results on the eight representative tongue images, where image columns 1-6 
indicate original images, ground truths, GVFRM [17], C2G2F [18], DGF [19], and the proposed 

method. 
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Fig. 6. Bar charts of four average quantitative measurement values on the entire image dataset. 
 

4.2 Results of quantitative evaluation 

 The segmentation results for the entire image dataset achieved with GVFRM [17], C2G2F 
[18], DGF [19], and the proposed method were evaluated by ME, FPR, FNR, and KI. 
Quantitative comparisons are shown in Figs. 6(a)-(d). In detail, the means and standard 
deviations of ME values obtained by the four methods were 0.079 ± 0.042, 0.141 ± 0.049, 
0.098 ± 0.044, and 0.052 ± 0.026, respectively. The means and standard deviations of FPR 
values were 0.088 ± 0.060, 0.150 ± 0.061, 0.081 ± 0.050, and 0.054 ± 0.032, respectively. 
The means and standard deviations of FNR values were 0.052 ± 0.083, 0.111 ± 0.079, 0.133 
± 0.091, and 0.043 ± 0.056, respectively. The means and standard deviations of KI values 
were 0.869 ± 0.067, 0.772 ± 0.083, 0.826 ± 0.080, and 0.906 ± 0.047, respectively. These 
quantitative results demonstrate the higher segmentation accuracy of the proposed method 
than other three methods. 

(a) (b) 

(c) (d) 
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Table 1. Average ME values obtained by the proposed method under different combinations of α and r 
α         r  1 2 3 4 5 

0.1 0.2086  0.2074  0.2075  0.2057  0.2041  
0.2 0.0982  0.0930  0.0929  0.0904  0.0877  
0.3 0.0520  0.0523  0.0524  0.0525  0.0525  
0.4 0.0767  0.0782  0.0784  0.0790  0.0807  
0.5 0.1196  0.1221  0.1243  0.1253  0.1282  

Table 2. Average KI values obtained by the proposed method under different combinations of α and r 
α         r  1 2 3 4 5 

0.1 0.3886  0.3953  0.3945  0.4040  0.4122  
0.2 0.7896  0.8040  0.8048  0.8115  0.8188  
0.3 0.9056  0.9052  0.9047  0.9046  0.9046  
0.4 0.8675  0.8654  0.8648  0.8642  0.8616  
0.5 0.8105  0.8080  0.8052  0.8039  0.8001  

4.3 Parameter selection 

The proposed method has two parameters, i.e., α and r. The proposed method uses α to 
control the ratio of exracted object pixels from the transformed hue component, and uses r as 
the structural element radius of porhoplogical operations when extracting the initial object 
region. We disscussed the impact of α and r on the segmentation accuracy for the entire 
dataset composed of 100 tongue images, where α and r were selected from {0.1, 0.2, 0.3, 0.4, 
0.5} and {1, 2, 3, 4, 5}, respectively. The average ME values and the average KI values are 
listed in Table 1 and Table 2, respectively. Lower ME values indicate better segmentation, 
while higher KI values indicate better segmentation. Both tables show that the segmentation 
accuracy first increases and then decreases with increases in α under each r. The best 
segmentation accuracy with the lowest ME value and the highest KI value was obtained with 
α=0.3 under each r. When α=0.3, both tables show that the segmentation accuracy decreases 
with increases in r. The best segmentation accuracy with the lowest ME value and the 
highest KI value was obtained with α=0.3 and r=1. Therefore, we set α and r to 0.3 and 1 in 
our experiments, respectively. 

5. Conclusions 

To improve tongue image segmentation accuracy, we developed a method that integrates 
image thresholding, gray projection, and ACM. The main feature of the proposed method is 
that it allows more accurate determination of the initial tongue body contour with the use of 
image thresholding and gray projection. Experimental results on the dataset composed of 100 
tongue images demonstrate that the proposed method achieves higher segmentation accuracy 
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than other state-of-the-art methods. However, the proposed method is prone to generation of 
over-segmentation, which needs to be resolved in future work. 
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