• Title/Summary/Keyword: object matching

Search Result 644, Processing Time 0.028 seconds

Moving Object Tracking Using MHI and M-bin Histogram (MHI와 M-bin Histogram을 이용한 이동물체 추적)

  • Oh, Youn-Seok;Lee, Soon-Tak;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • In this paper, we propose an efficient moving object tracking technique for multi-camera surveillance system. Color CCD cameras used in this system are network cameras with their own IP addresses. Input image is transmitted to the media server through wireless connection among server, bridge, and Access Point (AP). The tracking system sends the received images through the network to the tracking module, and it tracks moving objects in real-time using color matching method. We compose two sets of cameras, and when the object is out of field of view (FOV), we accomplish hand-over to be able to continue tracking the object. When hand-over is performed, we use MHI(Motion History Information) based on color information and M-bin histogram for an exact tracking. By utilizing MHI, we can calculate direction and velocity of the object, and those information helps to predict next location of the object. Therefore, we obtain a better result in speed and stability than using template matching based on only M-bin histogram, and we verified this result by an experiment.

  • PDF

Object Recognition using Neural Network (신경회로망을 이용한 물체인식)

  • Kim, Hyoung-Geun;Park, Sung-Kyu;Song, Chull;Choi, Kap-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 1992
  • In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.

  • PDF

Movement Search in Video Stream Using Shape Sequence (동영상에서 모양 시퀀스를 이용한 동작 검색 방법)

  • Choi, Min-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.492-501
    • /
    • 2009
  • Information on movement of objects in videos can be used as an important part in categorizing and separating the contents of a scene. This paper is proposing a shape-based movement-matching algorithm to effectively find the movement of an object in video streams. Information on object movement is extracted from the object boundaries from the input video frames becoming expressed in continuous 2D shape information while individual 2D shape information is converted into a lD shape feature using the shape descriptor. Object movement in video can be found as simply as searching for a word in a text without a separate movement segmentation process using the sequence of the shape descriptor listed according to order. The performance comparison results with the MPEG-7 shape variation descriptor showed that the proposed method can effectively express the movement information of the object and can be applied to movement search and analysis applications.

  • PDF

A Study of Relationship of Independence or Dependence for Reg ion using Isophotes Analysis (등조선(Isophote) 분석을 애용한 영역의 독립, 종속관계 연구)

  • 이승수;박장춘
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • If the areas existing in an object are composed of different color sets, the applicable object is segmented into independent areas so it gets to lose the meaning as an object. Therefore, it is required to selectively apply other information on the areas in addition to color information. Based on this methodology, this study, in addition to color information, has also analyzed the shape of isophotes that connect equivalence of brightness as a way of expressing cubic effect. And, through the analyzed information, it has judges independence or dependence of the areas, and then, proposed a way of object separation through significant regional matching of an object.

  • PDF

Visual Object Tracking based on Particle Filters with Multiple Observation (다중 관측 모델을 적용한 입자 필터 기반 물체 추적)

  • Koh, Hyeung-Seong;Jo, Yong-Gun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.539-544
    • /
    • 2004
  • We investigate a visual object tracking algorithm based upon particle filters, namely CONDENSATION, in order to combine multiple observation models such as active contours of digitally subtracted image and the particle measurement of object color. The former is applied to matching the contour of the moving target and the latter is used to independently enhance the likelihood of tracking a particular color of the object. Particle filters are more efficient than any other tracking algorithms because the tracking mechanism follows Bayesian inference rule of conditional probability propagation. In the experimental results, it is demonstrated that the suggested contour tracking particle filters prove to be robust in the cluttered environment of robot vision.

Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN (계층적 CNN을 이용한 방송 매체 내의 객체 인식 시스템 성능향상 방안)

  • Kwon, Myung-Kyu;Yang, Hyo-Sik
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2017
  • This paper is a smartphone object recognition system using hierarchical convolutional neural network. The overall configuration is a method of communicating object information to the smartphone by matching the collected data by connecting the smartphone and the server and recognizing the object to the convergence neural network in the server. It is also compared to a hierarchical convolutional neural network and a fractional convolutional neural network. Hierarchical convolutional neural networks have 88% accuracy, fractional convolutional neural networks have 73% accuracy and 15%p performance improvement. Based on this, it shows possibility of expansion of T-Commerce market connected with smartphone and broadcasting media.

Fast image stitching method for handling dynamic object problems in Panoramic Images

  • Abdukholikov, Murodjon;Whangbo, Taegkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5419-5435
    • /
    • 2017
  • The construction of panoramic images on smartphones and low-powered devices is a challenging task. In this paper, we propose a new approach for smoothly stitching images on mobile phones in the presence of moving objects in the scene. Our main contributions include handling moving object problems, reducing processing time, and generating rectangular panoramic images. First, unique and robust feature points are extracted using fast ORB method and a feature matching technique is applied to match the extracted feature points. After obtaining good matched feature points, we employ the non-deterministic RANSAC algorithm to discard wrong matches, and the hommography transformation matrix parameters are estimated with the algorithm. Afterward, we determine precise overlap regions of neighboring images and calculate their absolute differences. Then, thresholding operation and noise removal filtering are applied to create a mask of possible moving object regions. Sequentially, an optimal seam is estimated using dynamic programming algorithm, and a combination of linear blending with the mask information is applied to avoid seam transition and ghosting artifacts. Finally, image-cropping operation is utilized to obtain a rectangular boundary image from the stitched image. Experiments demonstrate that our method is able to produce panoramic images quickly despite the existence of moving objects.

Tracking Moving Object using Hausdorff Distance (Hausdorff 거리를 이용한 이동물체 추적)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm In dynamic scenes To adapt shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image To reduce processing time, 2D logarithmic search method is applied for locate the position of moving object Experiments on a running vehicle and motorcycle, the result showed that the mean square error of real position and tracking result is 1150 and 1845; matching times are reduced average 1125times and 523 times than existing algorithm for vehicle image and motorcycle image, respectively It showed that the proposed algorithm could track the moving object accurately.

  • PDF

A Stereo Image Recognition-Based Method for measuring the volume of 3D Object (스테레오 영상 인식에 기반한 3D 물체의 부피계측방법)

  • Jeong, Yun-Su;Lee, Hae-Won;Kim, Jin-Seok;Won, Jong-Un
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.237-244
    • /
    • 2002
  • In this paper, we propose a stereo image recognition-based method for measuring the volume of the rectangular parallelepiped. The method measures the volume from two images captured with two CCD (charge coupled device) cameras by sequential processes such as ROI (region of interest) extraction, feature extraction, and stereo matching-based vortex recognition. The proposed method makes it possible to measure the volume of the 3D object at high speed because only a few features are used in the process of stereo matching. From experimental results, it is demonstrated that this method is very effective for measuring the volume of the rectangular parallelepiped at high speed.

Face Relation Feature for Separating Overlapped Objects in a 2D Image (2차원영상에서 가려진 물체를 분리하기 위한 면관계 특징)

  • Piljae Song;Park, Hongjoo;Hyungtai Cha;Hernsoo Hahn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.54-68
    • /
    • 2001
  • This paper proposes a new algorithm that detects and separates the occluding and occluded objects in a 2D image. An input image is represented by the attributed graph where a node corresponds to a surface and an arc connecting two nodes describes the adjacency of the nodes in the image. Each end of arc is weighted by relation value which tells the number of edges connected to the surface represented by the node in the opposite side of the arc. In attributed graph, homogeneous nodes pertained to a same object always construct one of three special patterns which can be simply classified by comparison of relation values of the arcs. The experimental results have shown that the proposed algorithm efficiently separates the objects overlapped arbitrarily, and that this approach of separating objects before matching operation reduces the matching time significantly by simplifying the matching problem of overlapped objects as the one of individual single object.

  • PDF