• Title/Summary/Keyword: object matching

Search Result 644, Processing Time 0.027 seconds

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

A Study on Block Matching Algorithm with Variable-Block Size (가변 블록을 고려한 블록 정합 알고리즘에 관한 연구)

  • 김진태;주창희;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1420-1427
    • /
    • 1989
  • A new block matching algorithm that improved the existing block matching algorithm in terms of image quality is proposed in this paper. The subblock of image including the vertical edge of object is subdivided into new two subblocks, and the moving vector found. The result of computer simulation shows on real image that the image quality by the algorithm becomes higher than that of the three step search algorithm by 1.1dB.

  • PDF

New Matching Scheme for Panorama Image: A Simulation Study

  • Kim, Jeong-Seok;Chung, Sung-Taek;Hong, In-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.127-131
    • /
    • 2007
  • This paper presents a new matching scheme for creating a single panoramic image from a sequence of partially overlapping images of the same object or scene. This matching scheme is based directly on the searching algorithm, using a multiscale approach to the Hooke-Jeeves algorithm. Matching scheme evaluation was performed using simulated pattern images. The proposed matching scheme reveals good results and could be effectively applied to real ultrasound applications.

Intensity Gradients-based Stereo Matching of Road Images (에지정보를 이용한 도로영상의 스테레오 정합)

  • 이기용;이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 2003
  • In this paper, we propose a new binocular stereo correspondence method by maximizing a fitness formulated by integrating two constraints of edge similarity and disparity smoothness simultaneously. The proposed stereopsis focusing to measure distances to leading vehicles on roads uses intensity gradients as matching attribute. In contrast to the previous work of area-based stereo matching, in which matching unit is a pixel, the matching unit of the proposed method becomes an area itself which is obtained by selecting a series of pixels enclosed by two pixels on the left and right boundaries of an object. This approach allows us to cope with real-time processing and to avoid window size selection problems arising from conventional area-based stereo.

Realization of Image Processing Algorithms for Object Recognition Applicable to Packaging Inspection Processes (제품 포장라인 검사에 적용 가능한 객체 인식 영상처리 알고리즘 구현)

  • Kim, Tae-Gyu;Lee, Chang-Ho;An, Ho-Gyun;Yoon, Tae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.213-215
    • /
    • 2009
  • Using the object recognition processing on the captured images, we can inspect whether a packaging process is performed correctly in real time. So we realized the functions that acquire an image of each state of the packaging process using a camera, extract each object in the image, and inspect the packaging process using the extracted object data. In case an object shape is solid, for object search, a shape-based matching algorithm was used which searches the object utilizing the informations on the shape. In case an object shape is not solid, and Is flexible, gray-level difference of the pixels in the limited image region including the object was used to recognize the object.

  • PDF

Completion of Occluded Objects in a Video Sequence using Spatio-Temporal Matching (시공간 정합을 이용한 비디오 시퀀스에서의 가려진 객체의 복원)

  • Heo, Mi-Kyoung;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.351-360
    • /
    • 2007
  • Video Completion refers to a computer vision technique which restores damaged images by filling missing pixels with suitable color in a video sequence. We propose a new video completion technique to fill in image holes which are caused by removing an unnecessary object in a video sequence, where two objects cross each other in the presence of camera motion. We remove the closer object from a camera which results in image holes. Then these holes are filled by color information of some others frames. First of all, spatio-temporal volumes of occluding and occluded objects are created according to the centroid of the objects. Secondly, a temporal search technique by voxel matching separates and removes the occluding object. Finally. these holes are filled by using spatial search technique. Seams on the boundary of completed pixels we removed by a simple blending technique. Experimental results using real video sequences show that the proposed technique produces new completed videos.

Integral Histogram-based Framework for Rapid Object Tracking (고속 객체 검출을 위한 적분 히스토그램 기반 프레임워크)

  • Ko, Jaepil;Ahn, Jung-Ho;Hong, Won-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2015
  • In this paper we propose a very rapid moving object tracking method for an object-based auto focus on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use a sliding-window detection technique based on histogram features. By adapting the integral histogram, we solve the problem of the time-consuming histogram computation on each sub-window. For more speed up, we propose a local candidate search, and an adaptive scaling template method. In addition, we propose to apply a stabilization term in the matching function for a stable detection location. In experiments on our dataset, we demonstrated that we achieved a very rapid tracking performance demonstrating over 100 frames per second on a PC environment.

IMPLEMENTATION OFWHOLE SHAPE MEASUREMENT SYSTEM USING A CYLINDRICAL MIRROR

  • Uranishi, Yuki;Manabe, Yoshitsugu;Sasaki, Hiroshi;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.601-605
    • /
    • 2009
  • We have proposed a measurement system for measuring a whole shape of an object easily. The proposed system consists of a camera and a cylinder whose inside is coated by a mirror layer. A target object is placed inside the cylinder and an image is captured by the camera from right above. The captured image includes sets of points that are observed from multiple viewpoints: one is observed directly, and others are observed via the mirror. Therefore, the whole shape of the object can be measured using stereo vision in a single shot. This paper shows that a prototype of the proposed system was implemented and an actual object was measured using the prototype. A method based on a pattern matching which uses a value of SSD (Sum of Squared Difference), and a method based on DP (Dynamic Programming) are employed to identify a set of corresponding points in warped captured images.

  • PDF

Application of Stereo Vision for Shape Measurement of Free-form Surface using Shape-from-shading (자유곡면의 형상 측정에서 shape-from-shading을 접목한 스테레오 비전의 적용)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-140
    • /
    • 2017
  • Shape-from-shading (SFS) or stereo vision algorithms can be utilized to measure the shape of an object with imaging techniques for effective sensing in non-contact measurements. SFS algorithms could reconstruct the 3D information from a 2D image data, offering relatively comprehensive information. Meanwhile, a stereo vision algorithm needs several feature points or lines to extract 3D information from two 2D images. However, to measure the size of an object with a freeform surface, the two algorithms need some additional information, such as boundary conditions and grids, respectively. In this study, a stereo vision scheme using the depth information obtained by shape-from-shading as patterns was proposed to measure the size of an object with a freeform surface. The feasibility of the scheme was proved with an experiment where the images of an object were acquired by a CCD camera at two positions, then processed by SFS, and finally by stereo matching. The experimental results revealed that the proposed scheme could recognize the size and shape of freeform surface fairly well.

A New EDGE-BASED Stereo Correspondence Method for Snake-Based Object Segmentation (스네이크 기반 객체 추출을 위한 새로운 에지 기반 스테레오 일치화 방법)

  • Park, Min-Gyu;Alattar, Ashraf;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.269-274
    • /
    • 2008
  • In this paper, we propose a new stereo correspondence method for generating excellent external energy for snake-based object segmentation methods in stereo images. Our method first generates an edge-based disparity map by performing stereo correspondence between multi-level edge maps of the stereo image pair. Only edges of similar strength are considered for matching. To filter the disparity map for edges of the object of interest, the method estimates the object's disparity value by matching the pattern of edges of the region of interest in the left image against candidate patterns in the right image. The filtered edge map is then used to generate external energy for the snake. The proposed method has been tested on two snake models and results show a noticeable enhancement on performance of the snake when compared with other methods.