• Title/Summary/Keyword: object coordinates

Search Result 299, Processing Time 0.025 seconds

A Study on the Determination of Plane Coordinates Using Single Photo Method (단사진 해석기법을 이용한 평면좌표 결정에 관한 연구)

  • 유복모;박운용;조강연;이용희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.2
    • /
    • pp.37-46
    • /
    • 1987
  • The single photo method has a lot of applications in forestry, traffic accident managements, industry, criminal investigation, and in daily life. In this study a new single photo method was developed by classifying into the Space resection method and the 2 Dimensional Perspective Transformation method. Metric and nonmetric cameras were used to analyse the accuracy by means of single photo method, and the errors in coordinates and lengths were studied by changing the number and arrangement of control points to obtain the optimum condition for the single photo method. The influence of number and arrangement of control points on the accuracy was relatively small in case of the Metric WILD P31 and ASAHI PENTAX 6$\times$7 cameras, where as for errors it was a major factor in the Non-metric Nikon FM2. To overcome these defects, at least 6 control points should be used for the errors to be convergent and they should be distributed evenly over the surveying area. It was found that accuracy increased as the object to be photographed was placed in the perpendicular direction to the axis of camera.

  • PDF

Robust Watermarking Scheme Against Geometrical Attacks Using Alignment of Image Features (영상특징 정렬을 이용한 기하학적 공격에 강인한 워터마킹 기법)

  • Ko Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.624-634
    • /
    • 2006
  • This paper presents a new watermarking scheme that is robust against geometrical attacks such as translation and rotation. The proposed method is based on the conventional PSADT(Polar Coordinates Shape Adaptive Discrete Transform) method which is an robust watermarking scheme for an arbitrarily-shaped image such as character images. The PSADT method shows perfect robustness against geometrical attack if there is no change in the shape of the image object. However, it cannot be utilized to watermark general rectangular images because of the missing alignment between the watermarked signals in the embedding and extracting side. To overcome this problem we propose a new watermarking scheme that aligns the watermark signal using the image inherent feature, especially corner. Namely the proposed method decides a consistent target region whose shape and position isn't changed by any malicious attack and then embeds the watermark in it using the PSADT method. Experimental results show the robustness of the proposed method against geometrical attacks as well as image compression.

  • PDF

Design and Implementation of Early Warning Monitoring System for Cross-border Mining in Open-pit Mines (노천광산의 월경 채굴 조기경보 모니터링시스템의 설계 및 구현)

  • Li Ke;Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.25-41
    • /
    • 2024
  • For the scenario of open pit mining, at present, manual periodic verification is mainly carried out in China with the help of video surveillance, which requires continuous investment in labor cost and has poor timeliness. In order to solve this difficult problem of early warning and monitoring, this paper researches a spatialized algorithmic model and designs an early warning system for open-pit mine transboundary mining, which is realized by calculating the coordinate information of the mining and extracting equipments and comparing it with the layer coordinates of the approval range of the mines in real time, so as to realize the determination of the transboundary mining behavior of the mines. By taking the Pingxiang area of Jiangxi Province as the research object, after the field experiment, it shows that the system runs stably and reliably, and verifies that the target tracking accuracy of the system is high, which can effectively improve the early warning capability of the open-pit mines' overstepping the boundary, improve the timeliness and accuracy of mine supervision, and reduce the supervision cost.

Watching environment-independent color reproduction system development based on color adaption (색순응을 기반하여 관촬환경에 독립한 색재현 시스템 개발)

  • An, Seong-A;Kim, Jong-Pil;An, Seok-Chul
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.2
    • /
    • pp.43-53
    • /
    • 2003
  • As information-communication network has been developed rapidly, internet users' circumstances also have been changed for the better, in result, more information can be applied than before. At this moment, there are many differences between real color and reappeared color on the CRT. When we observe a material object, our eyes perceive the multiplied form of light sources and nature spectral reflection. However, when the photographed signal is reappeared, illumination at that time of photographing and spectral reflection of a material object are converted into signal, and this converted RGB signal is observed on the CRT under another illumination. At this time, RGB signal is the reflected result of illumination at that time of photographing Therefore, this signal is influenced by the illumination at present, so it can be perceived another color. To accord the colro reflections of another color source, the study has been reported by S.C.Ahn$^{[1]}$, which study is about the color reapperarance system using neuron network. Furthermore, color reappearing method become independent of its circumstances has been reported by Y.Miyake$^{[2]}$. This method can make the same illuminations even if the observe circumstances are changed. To assume the light sources of observe circumstances, the study about color reappearing system using CCD sensor also have been studied by S.C.Ahn$^{[3]}$. In these studies, a population is fixed, first, on ab coordinates of CIE L${\ast}$a${\ast}$b${\ast}$. Then, color reappearing can be possible using every population and existing digital camera. However, the color is changed curvedly, not straightly, according to value's changes on the ab coordinates of CIE L${\ast}$a${\ast}$b. To solve these problems in this study, first of all, Labeling techniques are introduced. Next, basis color-it is based on Munsell color system-is divided into 10 color fields. And then, 4 special color- skin color, grass color, sky color, and gray-are added to the basis color. Finally, 14 color fields are fixed. After analyzing of the principle elements of new-defined-color fields' population, utility value and propriety value are going to be examined in 3-Band system from now on.

  • PDF

Interactive Navigational Structures

  • Czaplewski, Krzysztof;Wisniewski, Zbigniew
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.495-500
    • /
    • 2006
  • Satellite systems for objects positioning appeared indispensable for performing basic tasks of maritime navigation. Navigation, understood as safe and effective conducting a vehicle from one point to another, within a specific physical-geographical environment. [Kopacz, $Urba{\acute{n}}ski$, 1998]. However, the systems have not solved the problem of accessibility to reliable and highly accurate information about a position of an object, especially if surveyed toward on-shore navigational signs or in sea depth. And it's of considerable significance for many navigational tasks, carried out within the frameworks of special works performance and submarine navigation. In addition, positioning precisely the objects other than vessels, while executing hydrographical works, is not always possible with a use of any satellite system. Difficulties with GPS application show up also while positioning such off-lying dangers as wrecks, underwater and aquatic rocks also other naturaland artificial obstacles. It is caused by impossibility of surveyors approaching directly any such object while its positioning. Moreover, determination of vessels positions mutually (mutual geometrical relations) by teams carrying out one common tasks at sea, demands applying the navigational techniques other than the satellite ones. Vessels'staying precisely on specified positions is of special importance in, among the others, the cases as follows: - surveying vessels while carrying out bathymetric works, wire dragging; - special tasks watercraft in course of carrying out scientific research, sea bottom exploration etc. The problems are essential for maritime economy and the Country defence readiness. Resolving them requires applying not only the satellite navigation methods, but also the terrestrial ones. The condition for implementation of the geo-navigation methods is at present the methods development both: in aspects of their techniques and technologies as well as survey data evaluation. Now, the classical geo-navigation comprises procedures, which meet out-of-date accuracy standards. To enable meeting the present-day requirements, the methods should refer to well-recognised and still developed methods of contemporary geodesy. Moreover, in a time of computerization and automation of calculating, it is feasible to create also such software, which could be applied in the integrated navigational systems, allowing carrying out navigation, provided with combinatory systems as well as with the new positioning methods. Whereas, as regards data evaluation, there should be applied the most advanced achievements in that subject; first of all the newest, although theoretically well-recognised estimation methods, including estimation [Hampel et al. 1986; $Wi{\acute{s}}niewski$ 2005; Yang 1997; Yang et al. 1999]. Such approach to the problem consisting in positioning a vehicle in motion and solid objects under observation enables an opportunity of creating dynamic and interactive navigational structures. The main subject of the theoretical suggested in this paper is the Interactive Navigational Structure. In this paper, the Structure will stand for the existing navigational signs systems, any observed solid objects and also vehicles, carrying out navigation (submarines inclusive), which, owing to mutual dependencies, (geometrical and physical) allow to determine coordinates of this new Structure's elements and to correct the already known coordinates of other elements.

  • PDF

Concepts of System Function and Modulation-Demodulation based Reconstruction of a 3D Object Coordinates using Active Method (시스템 함수 및 변복조 개념 적용 능동 방식 3차원 물체 좌표 복원)

  • Lee, Deokwoo;Kim, Jisu;Park, Cheolhyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.530-537
    • /
    • 2019
  • In this paper we propose a novel approach to representation of the 3D reconstruction problem by employing a concept of system function that is defined as the ratio of the output to the input signal. Akin to determination of system function (or system response), this paper determines system function by choosing (or defining) appropriate input and output signals. In other words, the 3D reconstruction using structured circular light patterns is reformulated as determination of system function from input and output signals. This paper introduces two algorithms for the reconstruction. The one defines the input and output signals as projected circular light patterns and the images overlaid with the patterns and captured by camera, respectively. The other one defines input and output signals as 3D coordinates of the object surface and the image captured by camera. The first one leads to the problem as identifying the system function and the second one leads to the problem as estimation of an input signal employing concept of modulation-demodulation theory. This paper substantiate the proposed approach by providing experimental results.

A Study on the 3-Dimensional Analysis by Bundle Adjustment in Close Range Photogrammetry (근접사진측량의 번들조정에 의한 삼차원 위치해석에 관한 연구)

  • 백은기;목찬상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.2
    • /
    • pp.10-18
    • /
    • 1988
  • In the three-dimensional analysis and deformation analysis of large structures, efficient is the use of the multiple method of close range photogrammetry which approaches the object distance. This study analyzes the influence of errors according to the overlap, the control points, and the object distance, to solve the problems which are raised in the multiple method. A wall-board, 7 meters by 3 meters, was used as a test field on which a total of 225 unknown points were equally disposed. The photographs with changing the overlap and object distance were taken by P-31 camera system. a total of 143 negatives are used in this study for computing 3-dimensional coordinates and its standard errors, and bundle adjustment of strips and blocks developed with on-line system is applied. In case of decreasing the number of control points, simulation error increases but actual error decreases and increases again. Due to the changed of object distances Z error represents largely compared to X, Y error, but good results in Z can be obtained by increasing the redundancy. And simulation error or actual error shows best results at the endlap of about 70%. To sum up this study, approprate arrangement of control points and overlap is meaningful, and multiple method by short object distance will be widely used to precision and deformation analysis of critical structures.

  • PDF

A Study on Applying Guidance Laws in Developing Algorithm which Enables Robot Arm to Trace 3D Coordinates Derived from Brain Signal (로봇 팔의 뇌 신호로부터 유도된 3D 좌표 추적을 위한 Guidance Law 적용에 관한 연구)

  • Kim, Y.J.;Park, S.W.;Kim, W.S.;Yeom, H.G.;Seo, H.G.;Lee, Y.W.;Bang, M.S.;Chung, C.K.;Oh, B.M.;Kim, J.S.;Kim, Y.;Kim, S.
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.50-54
    • /
    • 2014
  • It is being tried to control robot arm using brain signal in the field of brain-machine interface (BMI). This study is focused on applying guidance laws for efficient robot arm control using 3D coordinates obtained from Magnetoencephalography (MEG) signal which represents movement of upper limb. The 3D coordinates obtained from brain signal is inappropriate to be used directly because of the spatial difference between human upper limb and robot arm's end-effector. The spatial difference makes the robot arm to be controlled from a third-person point of view with assist of visual feedback. To resolve this inconvenience, guidance laws which are frequently used for tactical ballistic missile are applied. It could be applied for the users to control robot arm from a first-person point of view which is expected to be more comfortable. The algorithm which enables robot arm to trace MEG signal is provided in this study. The algorithm is simulated and applied to 6-DOF robot arm for verification. The result was satisfactory and demonstrated a possibility in decreasing the training period and increasing the rate of success for certain tasks such as gripping object.

Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking (영상기반 물체추적에 의한 소형 쿼드로터의 자세추정 성능향상)

  • Kang, Seokyong;Choi, Jongwhan;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.444-450
    • /
    • 2015
  • The accuracy of small and low cost CCD camera is insufficient to provide data for precisely tracking unmanned aerial vehicles(UAVs). This study shows how UAV can hover on a human targeted tracking object by using CCD camera rather than imprecise GPS data. To realize this, UAVs need to recognize their attitude and position in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for an UAV to estimate of his attitude by environment recognition for UAV hovering, as one of the best important problems. In this paper, we describe a method for the attitude of an UAV using image information of a maker on the floor. This method combines the observed position from GPS sensors and the estimated attitude from the images captured by a fixed camera to estimate an UAV. Using the a priori known path of an UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a marker on the floor and the estimated UAV's attitude. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the UAV. The Kalman filter scheme is applied for this method. its performance is verified by the image processing results and the experiment.

A Study for Drone to Keep a Formation and Prevent Collisions in Case of Formation Flying (드론의 삼각 편대비행에서 포메이션 유지 및 충돌 방지 제어를 위한 연구)

  • Cho, Eun-sol;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.499-501
    • /
    • 2016
  • In this paper, we suggest an advance method for maintaining a perceived behavior as triangle formation and preventing collision between each other in case of a flying drone. In the existing studies, the collision of the drone is only controlled by using light entered in the camera or the image processing. However, when there is no light, it is difficult to confirm the position of each other and they can collide because this system can not confirm the each other's position. Therefore, in this paper, we propose the system to solve the problems by using the distance and the relative coordinates of the three drones that were determined using the ALPS(Ad hoc network Localized Positioning System) algorithm. This system can be a new algorithm that will prevent collisions between each other during flying the drone object. The proposed algorithm is that we make drones maintaining a determined constant value of the distance between coordinates of each drone and the measured center of the drone of triangle formation. Therefore, if the form of fixed formation is disturbed, they reset the position of the drone so as to keep the distance between each drone and the center coordinates constant. As a result of the simulation, if we use the system where the supposed algorithm is applied, we can expect that it is possible to prevent malfunction or an accident due to collisions by preventing collisions of drones in advanced behavior system.

  • PDF