• Title/Summary/Keyword: obese-mouse

Search Result 119, Processing Time 0.024 seconds

Anti-Diabetic Effect of Sericultural Product in High Fat Diet-Fed Mice (고지방식이급여 마우스에서 잠상산물의 항당뇨 효능)

  • Ahn, Eunyeong;Choi, Sang-Won;Kim, Eunjung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • The objective of this study was to identify and compare the anti-diabetic effects of mulberry leave (ML), silkworm (SK), mulberry fruit (MF), and Cudrania tricuspidata BUREAU (CT) extracts in high fat diet (HFD)-induced obese and diabetic mice. C57BL/6N mice were assigned to six groups: normal diet (ND, n=7), HFD (n=10), HFD with 5% ML powder (ML, n=10), HFD with 2% SK powder (SK, n=10), HFD with 5% MF powder (MF, n=10), and HFD with 5% CT powder (CT, n=10). Mice were fed their assigned diet for 14 weeks. ML group showed significant reduction in levels of plasma glucose and insulin compared with the HFD group. Plasma total cholesterol (T-C) was significantly reduced by ML and SK compared with the HFD group. Plasma high-density lipoprotein cholesterol (HDL-C) and HTR (HDL-C to T-C ratio) levels of the ML, SK, MF, and CT groups were significantly elevated compared to the HFD group. Moreover, concentrations of hepatic T-C and triglycerides in the ML, SK, MF, and CT groups were significantly reduced in comparison to the HFD group. Levels of pAKT, pS6K, and pAMPK significantly increased in the ML group compared with the HFD group. Taken together, ML appears to be the most potent anti-diabetic and anti-dyslipidemic substance among sericultural products. ML could be developed as a potential agent for diabetes and its complication management.

Anti-hyperglycemic Effect of Cortex Mori radicis in db/db Mice (db/db 마우스에서 상백피의 혈당강하효과)

  • Kim, Youn-Young;Choue, Ryo-Won;Chung, Sung-Hyun;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1057-1064
    • /
    • 1999
  • Cortex Mori radicis has been used in the treatment of diabetes mellitus. In this study, the antihyperglycemic effect of Cortex Mori radicis was observed in obese diabetic mice(C57BLKsJ db/db). Cold water extract of Cortex Mori radicis was supplied in tab water(500, 1000 mg/kg/day) with normal chow for 5 weeks. Food intake and body weight gain were decreased significantly in experimental group. Also experimental group exhibited lower fasting serum glucose level when compaired to control group. Hb Alc level and triglyceride level were lowered in a dose-dependent manner. The activity of small intestinal disaccharidases was decreased at most segments. In conclusion, Cortex Mori radicis has anti-obesity effect to reduce food intake and body weight gain. And it is able to decrease the activity of small intestinal disaccharides and thus it can reduce serum glucose level and triglyceride level.

  • PDF

Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA

  • Sun, Chao;Hou, Zengmiao;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.576-583
    • /
    • 2009
  • G protein-coupled receptor 43 (GPR43) is a newly-discovered short-chain free fatty acid receptor and its functions remain to be defined. The objective of this study was to investigate the function of GPR43 on lipolysis. We successfully cloned the GPR43 gene from the pig (EU122439), and measured the level of GPR43 mRNA in different tissues and primary pig adipocytes. The expression level of GPR43 mRNA was higher in adipose tissue and increased gradually with adipocyte differentiation. Then we examined GPR43 mRNA level in different types, growth-stages and various regions of adipose tissue of pigs. The results showed that the expression level of GPR43 mRNA was significantly higher in adipose tissue of obese pigs than in lean pigs, and the expression level also gradually increased as age increased. We further found that the abundance of GPR43 mRNA level increased more in subcutaneous fat than visceral fat. Thereafter, we studied the correlation between GPR43 and lipid metabolism-related genes in adipose tissue and primary pig adipocytes. GPR43 gene had significant negative correlation with hormone-sensitive lipase gene (HSL, r = -0.881, p<0.01) and triacylglycerol hydrolase gene (TGH, r = -0.848, p<0.01) in adipose tissue, and had positive correlation with peroxisome proliferator-activated receptor $\gamma$ gene ($PPAR_{\gamma}$, r = 0.809, p<0.01) and lipoprotein lipase gene (LPL, r = 0.847, p<0.01) in adipocytes. In addition, we fed different concentrations of docosahexaenoic acid (DHA) to mice, and analyzed expression level changes of GPR43, HSL and TGH in adipose. The results showed that DHA down-regulated GPR43 and up-regulated HSL and TGH mRNA levels; GPR43 also had significant negative correlation with HSL (low: r = -0.762, p<0.01; high: r = -0.838, p<0.01) and TGH (low: r = -0.736, p<0.01; high: r = -0.586, p<0.01). Our results suggested that GPR43 is a potential factor which regulates lipolysis in adipose tissue, and DHA as a receptor of GPR43 might promote lipolysis through down-regulating the expression of GPR43 mRNA.

Anti-obesity effect of Ramulus mori extracts and stilbenes in high fat dietfed C57BL/6J mouse (고지방식이를 급여한 C57BL/6J 마우스에서 상지추출물과 스틸벤 화합물의 항비만 효능 연구)

  • Park, Jeong-Eun;Lee, Geon-Hee;Kim, Juhee;Choi, Sang-Won;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • v.53 no.6
    • /
    • pp.570-582
    • /
    • 2020
  • Purpose: Obesity is a risk factor for various adult diseases such as type 2 diabetes, cardio-cerebrovascular disease, and cancer. With an increasing obesity population worldwide, the prevention of obesity with natural components has emerged as an alternative health care strategy. Ramulus mori (Sangzhi, RM) is widely used as a traditional herbal medicine in East Asia. It contains various phytochemicals, including stilbenes and 2-arylbenzofurans. In this study, we compared the anti-obesity effects of RM extracts and its major stilbene components (mulberroside A [MSA] and oxyresveratrol [ORT]) in high fat diet (HFD)-fed obese mice. Methods: Five week-old, male C57BL/6J mice were grouped into 7 experimental groups: normal diet (ND), HFD, HFD + 1% RM water extracts (MW), HFD + 0.1% MSA, HFD + 1% RM ethanol extracts (ME), HFD + 0.1% ORT, and HFD + 1% Garcinia cambogia extracts (GC) as a positive control. All mice were fed experimental diet for 13 weeks. Results: Compared to the HFD group, total body weight and weekly body weight gain were significantly decreased in the ME, ORT, and GC groups. Glucose tolerance level was significantly decreased in all experimental groups, whereas plasma insulin level was decreased in MSA, ME, ORT and GC groups. Plasma glucose, triglyceride (TG), and total cholesterol levels were significantly decreased, whereas high-density lipoprotein cholesterol levels were increased in the MSA, ORT, and GC groups. Hepatic TG accumulation was also significantly decreased in the MSA, ME, ORT, and GC groups. Adipose tissue weight and size of adipocytes were significantly decreased in the MSA, ME and ORT groups, and were comparable to values obtained in the GC group. The levels of adiponectin and SREBP1c mRNA expressions were increased in the ORT and GC groups. Conclusion: These results indicate that ME, ORT and MSA exert significant anti-obesity effect, and have the potential to be developed as a weight control ingredient of functional foods.

Massa Medicata Fermentata improves fatty liver in high fat diet-fed nonalcoholic fatty liver disease's mouse model (고지방식이 유도 비알콜성지방간 마우스 모델에서 육신국(六神麯)의 지방간(脂肪肝) 개선효과)

  • Roh, Jong Seong;Lee, Hye Rim;Ahn, Ye Ji;Yoon, Mi Chung;Shin, Soon Shik
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.23-31
    • /
    • 2014
  • Objectives : This study was undertaken to verify the effects of Massa Medicata Fermentata (MMF) on nonalcoholic fatty liver disease (NAFLD) using high fat diet-fed male mice. Methods : Fifty four male C57BL/6N mice (age matched) were used for all experiments. Nine standard chow diet-fed mice were used as normal group and forty five high fat diet-fed obese mice were randomly divided into 5 groups: control, atorvastatin-10mg/kg, MMF(1)-62.5mg/kg, MMF(2)-125mg/kg and MMF(3)-250mg/kg. After all groups were treated with several kinds of diets for 8 weeks, we measured body weight gain, adipose tissue weights, plasma lipid and glucose metabolism, visceral organ weights, histological analysis for liver on the mice. Results : MMF-treated mice had lower body weight gain compared with controls. Among MMF-treated mice, the effect was magnified in MMF(2). MMF(3)-treated mice had lower blood plasma total cholesterol (TC) and glucose level compared with controls. MMF decreased hepatic lipid accumulation, liver fibrosis and liver inflammation of mice compared with controls. The effects was maximized in MMF(2) and atorvastatin. Blood plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), ${\gamma}$-glutamyltransferase (${\gamma}$-GT) concentrations tends to be decreased by MMF compared with controls. Blood plasma AST, ALT, ${\gamma}$-GT concentrations and organ weights were not changed by MMF, indicating that all three kinds of MMF do not show any hepatotoxicity. Conclusions : These results suggest that MMF improves NAFLD by reducing body weight gain, hepatic lipid accumulation, liver fibrosis, liver inflammation.

Transgenic Mice Overexpressing Cocaine-Amphetamine Regulated Transcript in the Brain and Spinal Cord (뇌와 척수에서 Cocaine-Amphetamine Regulated Transcript를 과발현하는 형질전환 생쥐)

  • Choi, S.H.;Lee, J.W.;Park, H.D.;Jahng, J.W.;Chung, K.S.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.389-397
    • /
    • 2001
  • Cocaine-amphetamine regulated transcript (CART), a satiety factor regulated by leptin, is associated with food intake and motor behavior. In knock out studies, Leu34Phe mutation of human CART gene resulted in obese phenotype but mice carrying a targeted deletion of the CART gene exhibited no dramatic increase of body weight on normal fat diet. To establish a new transgenic mouse model for determining the function of CART on feeding behavior in vivo, we constructed the fusion gene, CART gene under the control of neurofilament light chain promoter, which regulates gene expression at the stage of neuronal differentiation. Transgenic mice were generated by microinjection method and screened by PCR and Southern blot analyses. In these transgenic mice, overexpression of CART was detected by in situ hybridization in spinal cords and brains at 13.5 days post-coitum embryos. At six weeks of age, RT-PCR analysis showed that exogenous CART mRNA was expressed strongly in brains and spinal cords, but not much in other tissues. Our results suggest that these transgenic mice provide a new model to investigate the function of CART gene in neuronal network associated with feeding behavior.

  • PDF

Antiobesity Effect of Citrus Peel Extract Fermented with Aspergillus oryzae (Aspergillus oryzae로 생물전환한 감귤박의 항비만 효과)

  • Jeon, Hyun Joo;Yu, Sun Nyoung;Kim, Sang Hun;Park, Seul Ki;Choi, Hyeun Deok;Kim, Kwang Yeon;Lee, Sun Yi;Chun, Sung Sik;Ahn, Soon Cheo
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.827-836
    • /
    • 2014
  • There is a rising trend in obesity due to various factors, including changes in eating habits, lack of exercise, and genetic and psychological factors. Citrus peel has been reported to prevent obesity via antioxidative, antihypertensive, and LDL cholesterol-lowering effects. This study investigated the effects of citrus peel extract fermented with or without Aspergillus oryzae in a mouse model of diet-induced obesity. The animals were divided into four groups: a high-fat diet group (HFD), a normal fat diet (NFD) group, a citrus peel extract (CP) group, and a citrus peel extract fermented with A. oryzae (CPA) group. The citrus peel extract improved lipid metabolism and weight loss in the high-fat diet-induced obese mouse model. As expected, the body weight was higher in the HFD group compared with the NFD, CP, and CPA groups. However, the concentrations of total cholesterol (TG) and triglyceride (TC) in the serum and liver of the CP and CPA groups were lower than in the HFD group. There were no significant differences in the HDL cholesterol concentration among the groups. Taken together, our results suggest that extract of citrus peel biotransformed with A. oryzae had more antiobesity activity than citrus peel not transformed by A. oryzae through the fermentation of metabolites.

Effect of Obesity and Diabetes on Alzheimer's APP Gene Expression in Mouse Adipose Tissues (비만 및 당뇨가 생쥐 지방조직에서의 Alzheimer's APP 유전자 발현에 미치는 영향)

  • Kim, Jin-Woo;Lee, Yong-Ho
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1012-1018
    • /
    • 2010
  • The aim of this study was to determine whether Alzheimer's amyloid precursor protein (APP) is dysregulated in adipose tissues of C57BL/6 male mice by high-fat diet (HFD) induced obesity, aging, or streptozotocin (STZ)-induced diabetes. APP mRNA expression was examined by quantitative real-time PCR (QPCR) in subcutaneous (SAT) and epididymal adipose tissues (EAT) from mice in 8 different condition groups. By combining conditions of age (16 weeks/26 weeks of age), diet (normal diet (ND)/high-fat diet), and induction of diabetes (non-diabetic/diabetic), 88 mice were divided into 8 different groups. QPCR demonstrated that APP expression in SAT was significantly increased by about two-fold in HFD-induced obese mice compared to both 16 week-old and 26 week-old mice in the ND group (16 weeks p=0.001; 26 weeks p<0.0001), but no changes in EAT was found. Particular effects of aging on APP gene expression were not observed in either adipose tissue depots. Significantly decreased APP expression was found in SAT in STZ-induced diabetic mice fed on ND or HFD at 16 weeks of age (ND p<0.05; HFD p<0.01). Linear regression analysis demonstrated that APP expression levels correlated with body weight in both the non-diabetic group (R=0.657, p<0.0001, n=39) and the diabetic group (R=0.508, p=<0.0001, n=49), but did not correlate with plasma glucose levels, which suggests that decreased APP expression in STZ-induced diabetic mice is most likely due to weight loss rather than hyperglycemia. These data confirm APP dysregulation by weight changes in humans and suggest a possible role linking midlife obesity with the later development of amyloidogenesis in the brain of older patients with Alzheimer's disease.

Effect of High-Fat Diet-induced Obesity on the Incidence and Progression of Prostate Cancer in C57BL/6N Mouse (C57BL/6N 마우스에서 전립선암의 발병률 및 진행에 대한 고지방식이-유도 비만의 영향)

  • Choi, Yun Ju;Kim, Ji Eun;Lee, Su Jin;Gong, Jeong Eun;Jin, Yu Jeong;Lee, Jae Ho;Lim, Yong;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.532-541
    • /
    • 2022
  • Obesity induced by high-fat diet (HFD) is verified as a strong risk factor and negative prognostic factor for prostate cancer in several genetically engineered mice although it was not examined in the normal mice. To investigate whether HFD-induced obesity can affect the development and progression of cancer in the prostate of normal mice, alterations in the weight and histological structure of the prostate as well as the expression of cancer-related proteins were analyzed in obese C57BL/6N mice fed with 60% HFD for 16 weeks. First, HFD-induced obesity, including an increase in organ weight, body weight, fat accumulation, and serum lipid profile, was successfully induced in C57BL/6N mice after HFD treatment. The total weight of the prostate significantly increased HFD-induced obesity in the model mice compared with the control group. Among the four lobes of the prostate, the weight of the ventral prostate (VP) and anterior prostate (AP) were higher in HFD-induced obesity model mice than in the control group, although the weights of the lateral prostate (DLP) and seminal vesicle (SV) were constantly maintained. In addition, the incidences of hyperplasia and non-hodgkin's lymphoma (NHL) in the histological structure were remarkably increased in HFD-induced obesity model mice, while the epithelial thickness was higher in the same group. A significant increase in the phosphorylation levels of key proteins in the AKT (protein kinase B) signaling pathway was detected in HFD-induced obesity model mice. Therefore, these results suggest that HFD-induced obesity can promote hyperplasia and NHL in the prostates of C57BL/6N mice through the activation of the AKT signaling pathway.