Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.7.532

Effect of High-Fat Diet-induced Obesity on the Incidence and Progression of Prostate Cancer in C57BL/6N Mouse  

Choi, Yun Ju (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Kim, Ji Eun (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Lee, Su Jin (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Gong, Jeong Eun (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Jin, Yu Jeong (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Lee, Jae Ho (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Lim, Yong (Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University)
Hwang, Dae Youn (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.7, 2022 , pp. 532-541 More about this Journal
Abstract
Obesity induced by high-fat diet (HFD) is verified as a strong risk factor and negative prognostic factor for prostate cancer in several genetically engineered mice although it was not examined in the normal mice. To investigate whether HFD-induced obesity can affect the development and progression of cancer in the prostate of normal mice, alterations in the weight and histological structure of the prostate as well as the expression of cancer-related proteins were analyzed in obese C57BL/6N mice fed with 60% HFD for 16 weeks. First, HFD-induced obesity, including an increase in organ weight, body weight, fat accumulation, and serum lipid profile, was successfully induced in C57BL/6N mice after HFD treatment. The total weight of the prostate significantly increased HFD-induced obesity in the model mice compared with the control group. Among the four lobes of the prostate, the weight of the ventral prostate (VP) and anterior prostate (AP) were higher in HFD-induced obesity model mice than in the control group, although the weights of the lateral prostate (DLP) and seminal vesicle (SV) were constantly maintained. In addition, the incidences of hyperplasia and non-hodgkin's lymphoma (NHL) in the histological structure were remarkably increased in HFD-induced obesity model mice, while the epithelial thickness was higher in the same group. A significant increase in the phosphorylation levels of key proteins in the AKT (protein kinase B) signaling pathway was detected in HFD-induced obesity model mice. Therefore, these results suggest that HFD-induced obesity can promote hyperplasia and NHL in the prostates of C57BL/6N mice through the activation of the AKT signaling pathway.
Keywords
AKT; high fat diet; hyperplasia; obesity; prostate cancer;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kojta, I., Chacinska, M. and Blachnio-Zabielska, A. 2020. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 12, 1305.   DOI
2 Lin, H. P., Lin, C. Y., Liu, C. C., Su, L. C., Huo, C., Kuo, Y. Y., Tseng, J. C., Hsu, J. M., Chen, C. K. and Chuu, C. P. 2013. Caffeic acid phenethyl ester as a potential treatment for advanced prostate cancer targeting akt signaling. Int. J. Mol. Sci. 14, 5264-5283.   DOI
3 Mah, C. Y., Nassar, Z. D., Swinnen, J. V. and Butler, L. M. 2020. Lipogenic effects of androgen signaling in normal and malignant prostate. Asian J. Urol. 7, 258-270.   DOI
4 Park, J. J., Kim, J. E., Jeon, Y., Lee, M. R., Choi, J. Y., Song, B. R., Park, J. W., Kang, M. J., Choi, H. J., Bae, S. J., Lee, H., Kang, B. C. and Hwang, D. Y. 2020. Deletion of NKX3.1 via CRISPR/Cas9 induces prostatic intraepithelial neoplasia in C57BL/6 mice. Technol. Cancer Res. Treat. 19, 1533033820964425.
5 Venkateswaran, V., Haddad, A. Q., Fleshner, N. E., Fan, R., Sugar, L. M., Nam, R., Klotz, L. H. and Pollak, M. 2007. Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J. Natl. Cancer Inst. 99, 1793-1800.   DOI
6 Yang, T., Wu, X., Hu, J., Hu, M., Xu, H., Jiang, H. and Ding, Q. 2018. Maternal high-fat diet promotes the development and progression of prostate cancer in transgenic adenocarcinoma mouse prostate offspring. Cell Physiol. Biochem. 47, 1862-1870.   DOI
7 Faes, S. and Dormond, O. 2015. PI3K and AKT: unfaithful partners in cancer. Int. J. Mol. Sci. 16, 21138-21152.   DOI
8 Bendor, C. D., Bardugo, A., Pinhas-Hamiel, O., Afek, A. and Twig, G. 2020. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 19, 1-14.   DOI
9 Giovannucci, E. and Michaud, D. 2007. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 2208-2225.
10 Liu, S., Zhang, Q., Chen, C., Ge, D., Qu, Y., Chen, R., Fan, Y. M., Li, N., Tang, W. W., Zhang, W., Zhang, K., Wang, A. R., Rowan, B. G., Hill, S. M., Sartor, O., Abdel-Mageed, A. B., Myers, L., Lin, Q. and You, Z. 2016. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor. Oncotarget 7, 13651.   DOI
11 Friedenreich, C. M., McGregor, S. E., Courneya, K. S., Angyalfi, S. J. and Elliott, F. G. 2004. Case-control study of anthropometric measures and prostate cancer risk. Int. J. Cancer 110, 278-283.   DOI
12 Zaidi, S., Gandhi, J., Seyam, O., Joshi, G., Waltzer, W. C., Smith, N. L. and Khan, S. A. 2018. Etiology, diagnosis, and management of seminal vesicle stones. Curr. Urol. 12, 113-120.
13 Yamamoto, Y., De Velasco, M. A., Kura, Y., Nozawa, M., Hatanaka, Y., Oki, T., Ozeki, T., Shimizu, N., Minami, T., Yoshimura, K., Yoshikawa, K., Nishio, K. and Uemura, H. 2015. Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer. J. Transl. Med. 13, 1-12.   DOI
14 Shukla, S., MacLennan, G. T., Hartman, D. J., Fu, P., Resnick, M. I. and Gupta, S. 2007. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int. J. Cancer Res. 121, 1424-1432.   DOI
15 Hu, M. B., Xu, H., Zhu, W. H., Bai, P. D., Hu, J. M., Yang, T., Jiang, H. W. and Ding, Q. 2018. High-fat-diet-induced adipokine and cytokine alterations promote the progression of prostate cancer in vivo and in vitro. Oncol. Lett. 15, 1607-1615.
16 Kalender, M. E., Sevinc, A., Tutar, E., Buyukberber, S. and Camci, C. 2007. Metachronous non-hodgkin's lymphoma in a patient with localized prostate cancer. Med. Oncol. 24, 466-468.   DOI
17 Sivaprakasam, S., Sikder, M. O. F., Ramalingam, L., Kaur, G., Dufour, J. M., Moustaid-Moussa, N., Wachtel, M. S. and Ganapathy, V. 2021. SLC6A14 deficiency is linked to obesity, fatty liver, and metabolic syndrome but only under conditions of a high-fat diet. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166087.   DOI
18 Wang, X., Wei, L., Xiao, J., Shan, K., He, Q., Huang, F., Ge, X., Gao, X., Feng, N. and Chen, Y. Q. 2022. Cholesterol and saturated fatty acids synergistically promote the malignant progression of prostate cancer. Neoplasia 24, 86-97.   DOI
19 Wlodarczyk, M. and Nowicka, G. 2019. Obesity, DNA damage, and development of obesity-related diseases. Int. J. Mol. Sci. 20, 1146.   DOI
20 Bhatia-Gaur, R., Donjacour, A. A., Sciavolino, P. J., Kim, M., Desai, N., Young, P., Norton, C. R., Gridley, T., Cardiff, R. D., Cunha, G. R., Abate-Shen, C. and Shen, M. M. 1999. Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966-977.   DOI
21 Calle, E. E. and Kaaks, R. 2004. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579-591.   DOI
22 Fujita, K., Hayashi, T., Matsushita, M., Uemura, M. and Nonomura, N. 2019. Obesity, inflammation, and prostate cancer. J. Clin. Med. 8, 201.   DOI
23 Dan, C., Zhang, H., Zeng, W., Huang, L., Gong, X., Li, H., Yang, E., Wang, L. and Yao, Q. 2019. HNF1B expression regulates ECI2 gene expression, potentially serving a role in prostate cancer progression. Oncol. Lett. 17, 1094-1100.   DOI
24 Discacciati, A., Orsini, N. and Wolk, A. 2014. Coffee consumption and risk of nonaggressive, aggressive and fatal prostate cancer-a dose-response meta-analysis. Ann. Oncol. 25, 584-591.   DOI
25 Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Pineros, M., Znaor, A. and Bray, F. 2021. Cancer statistics for the year 2020: An overview. Int. J. Cancer 149, 778-789.   DOI
26 Kim, C. W. and Lee, K. H. 2014. Effects of pharmacopuncture on experimental rat model of benign prostatic hyperplasia. J. Acupunct. Res. 31, 95-103.   DOI
27 Hayashi, T., Fujita, K., Nojima, S., Hayashi, Y., Nakano, K., Ishizuya, Y., Wang, C., Yamamoto, Y., Kinouchi, T., Matsuzaki, K., Jingushi, K., Kato, T., Kawashima, A., Nagahara, A., Ujike, T., Uemura, M., Pena, M. D. C. R., Gordetsky, J. B., Morii, E., Tsujikawa, K., Netto, G. J. and Nonomura, N. 2018. High-fat diet-induced inflammation accelerates prostate cancer growth via IL6 signaling. Clin. Cancer Res. 54, 4309-4318.
28 Huang, M., Koizumi, A., Narita, S., Inoue, T., Tsuchiya, N., Nakanishi, H., Numakura, K., Tsuruta, H., Saito, M., Satoh, S., Nanjo, H., Sasaki, T. and Habuchi, T. 2016. Diet-induced alteration of fatty acid synthase in prostate cancer progression. Oncogenesis 5, e195.   DOI
29 Jung, K. W., Won, Y. J., Hong, S., Kong, H. J. and Lee, E. S. 2020. Prediction of cancer incidence and mortality in korea, 2020. Cancer Res. Treat. 52, 51-358.   DOI
30 Knudsen, B. S. and Vasioukhin, V. 2010. Mechanisms of prostate cancer initiation and progression. Adv. Cancer Res. 109, 1-50.   DOI
31 Kwan, H. W., Liu, B., Huang, C., Fatima, S., Su, T., Zhao, Z., Ho, A. H. M., Han, Q., Hu, X., Gong, R. H., Chen, M., Wong, H. L. Z. and Bian, Z. 2019. Signal transducer and activator of transcription-3 drives the high-fat diet-associated prostate cancer growth. Cell Death Dis. 10, 637.   DOI
32 Zhao, Y., Tan, Y. S., Aupperlee, M. D., Langohr, I. M., Kirk, E. L., Troester, M. A., Schwartz, R. C. and Haslam, S. Z. 2013. Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res. 15, R100.   DOI
33 Chen, H., Zhou, L., Wu, X., Li, R., Wen, J., Sha, J. and Wen, X. 2016. The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front. Biosci. 21, 1084-1091.   DOI
34 Labbe, D. P., Uetani, N., Vinette, V., Lessard, L., Aubry, I., Migon, E., Sirois, J., Haigh, J. J., Begin, L. R., Trotman, L. C., Paquet, M. and Tremblay, M. L. 2016. PTP1B deficiency enables the ability of a high-fat diet to drive the invasive character of PTEN-deficient prostate cancers. Cancer Res. 76, 3130-3135.   DOI
35 Narita, S., Nara, T., Sato, H., Koizumi, A., Huang, M., Inoue, T. and Habuchi, T. 2019. Research evidence on high-fat diet-induced prostate cancer development and progression. J. Clin. Med. 8, 597.   DOI
36 Manrique-Acevedo, C., Chinnakotla, B., Padilla, J., Martinez-Lemus, L. A. and Gozal, D. 2020. Obesity and cardiovascular disease in women. Int. J. Obes. 44, 1210-1226.   DOI
37 Martini, M., De Santis, M. C., Braccini, L., Gulluni, F. and Hirsch, E. 2014. PI3K/AKT signaling pathway and cancer: an updated review. Ann. Med. 46, 372-383.   DOI
38 Xu, H., Hu, M. B., Bai, P. D., Zhu, W. H., Liu, S. H., Hou, J. Y., Xiong, Z. Q., Ding, Q. and Jiang, H. W. 2015. Proinflammatory cytokines in prostate cancer development and progression promoted by high-fat diet. Biomed. Res. Int. 2015, 249741.