• Title/Summary/Keyword: nutraceutical

Search Result 243, Processing Time 0.03 seconds

A Study on the Glucose-regulating Enzymes and Antioxidant Activities of Water Extracts from Medicinal Herbs (한약재의 물 추출물이 당대사 관련 효소와 항산화 활성에 관한 연구)

  • Choe, Myeon;Kim, Dae-Jung;Lee, Hyeon-Ju;You, Jin-Kyoun;Seo, Dong-Joo;Lee, Joon-Hee;Chung, Mi-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.542-547
    • /
    • 2008
  • The anti-diabetic effects of water extracts (WE) from medicinal herbs on hepatic glucose-regulating enzymes, such as glucokinase (GCK), pyruvate dehydrogenase (PDH), acetyl-CoA carboxylase (ACC) and ${\alpha}$-glucosidase, were studied using the cytosol fraction in liver and mitochondia fraction in heart of a type II diabetic animal (GK rat, Goto-Kakizaki). The free radical scavenging activity of water extracts by DPPH method was also tested. We found that free radical scavenging activity was strong in Corni fructu (CF), Mokdan Bark (MDB), Chenhwabon (CHB) and Sanyack (SY), while that of Backbocreng (BBR), Shuckgihwang (SGH) and Taecsa (TS) was lower. For GCK activity in cytosol of liver, CF and CHB had a more effective activity than other extracts. PDH activity in mitochondria fraction of heart was higher in all of the extracts, expect for the TS extract, than in the control. ACC activity in cytosol fraction of liver was significantly higher in the CF, CHB, SGH, TS and SY extracts than in the control. CF, BBR and MDB led to a decrease in the ${\alpha}$-glucosidase activity. Therefore, these results suggest that all of the extracts may be used as functional material in the development as anti-diabetic functional food and medicine.

Antioxidant and Nitrite Scavening Activity and α-Glucosidase Inhibitory Effect of Water Extract from Schizandra chinensis Baillon (오미자 열수 추출물의 항산화 활성과 아질산 소거능 및 α-Glucosidase 저해 효과)

  • Cho, Hea-Eun;Choi, Young-Ju;Cho, Eun-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.481-486
    • /
    • 2010
  • The nutraceutical role of omija (Schizandra chinensis Baillon) water extract (OWE) was determined through the analysis of antioxidant activity, nitrite scavening activity, and xanthine oxdiase and $\alpha$-glucosidase inhibitory effects. Antioxidant activity of OWE was measured by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity and superoxide dismutase-like activity (SODA). DPPH radical scavenging activity and SODA increased in a dose-dependent manner, and was about 49.0% at 2.5 mg/mL and 69.2% at 5 mg/mL, respectively. The xanthine oxidase and $\alpha$-glucosidase inhibitory activities of OWE were about 88.8% and 86.2% at 1 mg/mL, respectively. Nitrite scavenging activity of OWE was about 54.9%, 42.4%, and 34.2% on pH 1.2, 3.0, and 6.0 at 1 mg/mL, respectively. These results suggest that OWE has a strong antioxidant activity, and xanthine oxidase and $\alpha$-glucosidase inhibitory effects.

Antioxidant and Anticancer Activities of Methanol Extracts Prepared from Different Parts of Jangseong Daebong Persimmon (Diospyros kaki cv. Hachiya) (장성 대봉감의 부위별 메탄올 추출물의 항산화 활성 및 항암 활성)

  • Jo, Young-Hong;Park, Ji-Won;Lee, Jeung-Min;Ahn, Gwang-Hwan;Park, Hae-Ryong;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.500-505
    • /
    • 2010
  • The antioxidant activity of methanol extracts from five different parts (flesh, peel, core, seed, calyx) of Jangseong Daebong persimmon (Diospyros kaki cv. Hachiya) were evaluated by determining total phenol content (TPC), DPPH radical scavenging activity (RSA), ABTS RSA, and reducing power (RP). The flesh extract gave the highest yield (92.93%) while the lowest yield was obtained from the seed (5.17%). The seed extract showed the highest total phenolic content ($76.47\pm0.009$ mg GAE/g extract), DPPH RSA ($IC_{50}=52.05\pm1.61\;{\mu}g/mL$), ABTS RSA ($IC_{50}=30.94\pm0.41\;{\mu}g/mL$) and RP ($IC_{50}=87.94\pm0.37\;{\mu}g/mL$). In addition, the calyx extract also showed high antioxidant activity. On the other hand, the core extract gave the lowest TPC and all antioxidant assays. In particular, HT-29 cells showed extensive cell death when treated with $500\;{\mu}g/mL$ of calyx extracts. Thus, these results suggest that methanolic extracts of Jangseong Daebong persimmon seed and calyx may serve as a potential source of natural antioxidant for food and nutraceutical application.

Antioxidative and Macrophage Phagocytic Activities and Functional Component Analyses of Selected Korean Chestnut (Castanea crenata S. et Z.) Cultivars (국내산 밤 일부 품종의 기능성 성분분석과 항산화 및 대식세포 활성)

  • Lee, Hyeon-Ju;Chung, Mi-Ja;Cho, Jae-Youl;Ham, Seung-Shi;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1095-1100
    • /
    • 2008
  • Antioxidative and macrophage phagocytic activities and contents of functional component in selected Korean chestnuts (Dantaek, Daebo, Okkwang, Seokchu, Byunggo) were evaluated. Coumarin, gallic acid and catechin in inner skin and whole kernel of selected Korean chestnuts were detected by HPLC. The predominant functional components in inner skin of chestnut were catechin, followed by gallic acid and coumarin. However, the whole kernel had only gallic acid. Thus, the antioxidant properties of gallic acid and catechin were evaluated through DPPH radical-scavenging activity and SOD like activity. Gallic acid and catechin at 6.0 mg/100 g exhibited 69.4% and 38.3% of scavenging activities on DPPH radical, respectively. DPPH radical-scavenging activity of gallic acid increased in a concentration-dependent manner. Gallic acid was found to possess higher DPPH radical-scavenging activity than equivalent amount of catechin at all concentrations, whereas catechin was found to have higher SOD like activity than gallic acid. In addition, pre-incubation of macrophage with white kernel extract from Byunggo resulted in a significant increase of phagocytic activity and yellow kernel extracts from Byunggo, Dantaek, Daebo and Okkwang, leading to an increase in phagocytic activity compared with untreated cells. Yellow kernel extracts was found to have higher phagocytic activity than white kernel extracts. Byunggo had the highest phagocytic activity. The results suggest that the Korean chestnut may provide a natural source of antioxidants and active immunity.

A Study on the Effect of Consumer's Benefits and Attitudes on the Functional Health Food Purchasing Intention (소비자 추구혜택과 관심도 및 태도가 기능성건강식품 구매의도에 미치는 영향)

  • Yu, Dong Sool;Kim, Hong Keun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.11 no.5
    • /
    • pp.189-204
    • /
    • 2016
  • The study is aimed at figuring out the effect of the consumers benefit, attitudes and interest when customers purchase functional food on purchasing intention and product a foundation of competitive power such as a customized product development for a marketing strategy by examining consumers' behavioral patterns. The range of functional food which is a subject of this study is included in the nutraceutical foods, protective foods in addition to biocontrol food. It surveyed about ages of 20 to 60 domestic residents who have taken functional food in order to conduct the study. Data used in this study was collected 353 answers in September 2016, and hierarchical analysis which is a demographic characteristic as control variables was conducted to verify the hypothesis using statistical program SPSS 21.0 The result of this study demonstrates that firstly, psychological pursued benefit secondly, health concern thirdly, health management attitude affects to functional purchasing intention. It is expecting that the result of this study will be used on the basic standards that are grasping and generalizing the needs of customers. In addition, it is also expecting to contribute to improvement of internal and external functional food industry as a functional food material development because it provides empirical customer behavior analysis result.

  • PDF

Microbial Production of Carotenoids: Biological Functions and Commercial Applications (미생물에 의한 카로티노이드 생산; 생물학적 기능성 및 상업적 적용)

  • Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.726-737
    • /
    • 2017
  • Carotenoids are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. They typically consist of a $C_{40}$ hydrocarbon backbone often modified by different oxygen-containing functional groups, to yield cyclic or acyclic xanthophylls. Much work has also been focused on the identification, production, and utilization of natural sources of carotenoid (plants, microorganisms and crustacean by-products) as an alternative to the synthetic pigment which currently covers most of the world markets. Nevertheless, only a few carotenoids (${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, and lutein) can be produced commercially by fermentation or isolation from the small number of abundant natural sources. The market and demand for carotenoids is anticipated to increase dramatically with the discovery that carotenoids exhibit significant anti-carcinogenic activities and play an important role in the prevention of chronic diseases. The increasing importance of carotenoids in the feed, nutraceutical food and pharmaceutical markets has renewed by efforts to find ways of producing additional carotenoid structures in useful quantities. Because microorganisms and plants synthesize hundreds of different complex chemical carotenoid structures and a number of carotenoid biosynthetic pathways have been elucidated on a molecular level, metabolic and genetic engineering of microorganisms can provide a means towards economic production of carotenoid structures that are otherwise inaccessible. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoid in the diet and review the efforts that have been made to increase carotenoid in certain microorganisms.

Roc10, a Rice HD-Zip transcription factor gene, modulates lignin biosynthesis for drought tolerance

  • Bang, Seung Woon;Lee, Dong-Keun;Jung, Harin;Chung, Pil Joong;Kim, Youn Shic;Choi, Yang Do;Suh, Joo-Won;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.159-159
    • /
    • 2017
  • Drought, a common environmental constraint, induces a range of physiological, biochemical and molecular changes in plants, and can cause severe reductions in crop yield. Consequently, understanding the molecular mechanisms of drought tolerance is an important step towards crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper class IV transcription factor gene, ${\underline{R}ice}$ ${\underline{o}utermost}$ ${\underline{c}ell-specific}$ gene 10 (Roc10), enhances drought tolerance and grain yield by increasing lignin accumulation in ground tissues. Overexpression of Roc10 in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both more effective photosynthesis and a reduction in water loss rate, compared with non-transgenic controls or RNAi transgenic plants. Importantly, Roc10 overexpressing plants had a higher drought tolerance at the reproductive stage of growth and a higher grain yield compared with the controls under field-drought conditions. Roc10 is mainly expressed in outer cell layers including the epidermis and the vasculature of the shoots, which coincides with areas of cell wall lignification. Roc10 overexpression elevated the expression levels of lignin biosynthetic genes in shoots, with a concomitant increase in the accumulation of lignin, while the overexpression and RNAi lines showed opposite patterns of lignin accumulation. We identified downstream target genes of Roc10 by performing RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses of shoot tissues. Roc10 was found to directly bind to the promoter of PEROXIDASEN/PEROXIDASE38, a key gene in lignin biosynthesis. Together, our findings suggest that Roc10 confers drought stress tolerance by promoting lignin biosynthesis in ground tissues.

  • PDF

Effect of addition amino acids on the mycelial growth and the contents of β-glucan and γ-aminobutyric acid (GABA) in Sparassis latifolia (아미노산 첨가가 꽃송이버섯 균사체 성장 및 베타글루칸, GABA 함량 변화에 미치는 영향)

  • Jo, Han-Gyo;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • Sparassis latifolia (formerly S. crispa) is used in food and nutraceuticals or dietary supplements, as rich in flavor compounds and ${\beta}-glucan$. Some previous studies have reported the effects of mushroom on brain function, including its neuroprotective effect. Thus, for this mushroom to be used as an effective nutraceutical for brain function, it would be desirable for it to contain other compounds such as ${\gamma}-aminobutyric$ acid (GABA) in addition to ${\beta}-glucan$. In this study, the enhancement of growth and GABA production in the mycelium of medicinal and edible mushroom S. latifolia was investigated. Amino acids were added externally as the main source of nutrition, and the effects of amino acids were investigated using liquid medium, specifically amino acid-free potato dextrose broth (PDB). The amino acids added were L-glutamic acid (named PDBG medium) and L-ornithine (named PDBO medium). The growth of mycelia was determined to be $0.9{\pm}0.00g/L$, $2.2{\pm}0.16g/L$, and $1.93{\pm}0.34g/L$ PDBG respectively. The GABA content was $21.3{\pm}0.9mg/100g$ in PDB medium, and it in PDBG 1.4% medium, at $115.4{\pm}30.2mg/100g$. However, the PDBO medium was not effective in increasing the GABA content of mycelia. Amino acids had little effect on the ${\beta}-glucan$ content of mycelia. The ${\beta}-glucan$ content was $39.7{\pm}1.4mg/100mg$, $34.4{\pm}0.2mg/100mg$, and $35.2{\pm}9.2mg/100mg$ in PDB, PDBG 1.8% and PDBO 1.4% media, respectively. Addition of glutamic acid and ornithine positively affected the growth of S. latifolia mycelia, and glutamic acid positively affected GABA production; no degradation of GABA was observed with addition of glutamic acid.

Anti-inflammatory Effects of Ethanolic Extracts from Codium fragile on LPS-Stimulated RAW 264.7 Macrophages via Nuclear Factor kappaB Inactivation

  • Yoon, Ho-Dong;Jeong, Eun-Ji;Choi, Ji-Woong;Lee, Min-Sup;Park, Myoung-Ae;Yoon, Na-Young;Kim, Yeon-Kye;Cho, Deuk-Moon;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • Bacterial lipopolysaccharide (LPS) induces expression of pro-inflammatory cytokines and enzymes producing nitric oxide (NO) and prostaglandins (PGs) in immune cells. This process is mediated by the activation of nuclear factor kappaB (NF-${\kappa}B$). In this study, we investigated the anti-inflammatory characteristics of Codium fragile ethanolic extract (CFE) mediated by the regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using LPS-stimulated murine macrophage RAW 264.7 cells. CFE significantly inhibited LPS-induced NO and $PGE_2$ production in a dose-dependent manner and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells with no cytotoxicity. Pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$, were significantly reduced by treatment of CFE in LPS-stimulated RAW 264.7 cells. CFE inhibited the promoter activity of (NF)-${\kappa}B$ in LPS-stimulated macrophages. Treatment with CFE suppressed translocation of the NF-${\kappa}B$ p65 subunit by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that the CFE-mediated inhibition of NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells is mediated through the NF-${\kappa}B$-dependent transcriptional downregulation of iNOS and COX-2, suggesting the potential of CFE as a nutraceutical with anti-inflammatory activity.

Difference of Ginsenoside Yields in Red Ginseng Parts According to Extraction Time at Low Temperature (저온에서 추출시간에 따른 홍삼 부위별 ginsenoside 함량 비교)

  • Han, Jin-Soo;Kang, Sun-Joo;Nam, Ki-Yeul;Choi, Jae-Eul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • In this study, the contents of ginsenoside were compared according to the red ginseng extract times to provide basic information for developing nutraceutical foods using red ginseng. The highest total ginsenoside contents of the main, lateral, and fine root extracts were 23.04, 65.68, and 295.92 mg/100 mL when extracted at $75^{\circ}C$ for 21, 18, and 12 hours, respectively. The total ginsenoside content showed a tendency to decrease as the extraction times were increased. The highest Rb1 and Rg1 contents of the main, lateral, and fine root extracts were 5.76, 28.39, and 117.83 mg/100 mL when extracted at $75^{\circ}C$ for 18, 15, and, 12 hours, respectively, and their highest Rb2 and Re contents were 5.76, 28.39, and 117.83 when extracted under the same conditions. The prosapogenin content of the red ginseng extract increased along with the extraction time. The highest total ginsenoside extraction ratios of the main, lateral, and fine root extracts of the red ginseng at $75^{\circ}C$ were 21.3, 21.1, and 67.1%, respectively.