• 제목/요약/키워드: numerical weather forecast model

검색결과 97건 처리시간 0.02초

기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증 (Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration)

  • 김세현;김현미;계준경;이승우
    • 대기
    • /
    • 제25권1호
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Ensemble Model Output Statistics를 이용한 평창지역 다중 모델 앙상블 결합 및 보정 (A Combination and Calibration of Multi-Model Ensemble of PyeongChang Area Using Ensemble Model Output Statistics)

  • 황유선;김찬수
    • 대기
    • /
    • 제28권3호
    • /
    • pp.247-261
    • /
    • 2018
  • The objective of this paper is to compare probabilistic temperature forecasts from different regional and global ensemble prediction systems over PyeongChang area. A statistical post-processing method is used to take into account combination and calibration of forecasts from different numerical prediction systems, laying greater weight on ensemble model that exhibits the best performance. Observations for temperature were obtained from the 30 stations in PyeongChang and three different ensemble forecasts derived from the European Centre for Medium-Range Weather Forecasts, Ensemble Prediction System for Global and Limited Area Ensemble Prediction System that were obtained between 1 May 2014 and 18 March 2017. Prior to applying to the post-processing methods, reliability analysis was conducted to identify the statistical consistency of ensemble forecasts and corresponding observations. Then, ensemble model output statistics and bias-corrected methods were applied to each raw ensemble model and then proposed weighted combination of ensembles. The results showed that the proposed methods provide improved performances than raw ensemble mean. In particular, multi-model forecast based on ensemble model output statistics was superior to the bias-corrected forecast in terms of deterministic prediction.

위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과 (The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA)

  • 이주원;이승우;한상옥;이승재;장동언
    • 대기
    • /
    • 제21권1호
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.

2020년 수도권 라디오존데 집중관측 자료의 한국형모델 기반 관측 영향 평가 (Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period)

  • 황윤정;하지현;김창환;최다영;이용희
    • 대기
    • /
    • 제31권3호
    • /
    • pp.311-326
    • /
    • 2021
  • To improve the predictability of high-impact weather phenomena around Seoul, where a larger number of people are densely populated, KMA conducted the intensive observation from 22 June to 20 September in 2020 over the Seoul area. During the intensive observation period (IOP), the dropsonde from NIMS Atmospheric Research Aircraft (NARA) and the radiosonde from KMA research vessel Gisang1 were observed in the Yellow Sea, while, in the land, the radiosonde observation data were collected from Icheon and Incheon. Therefore, in this study, the effects of radiosonde and dropsonde data during the IOP were investigated by Observing System Experiment (OSE) based on Korean Integrated Model (KIM). We conducted two experiments: CTL assimilated the operational fifteen kinds of observations, and EXP assimilated not only operational observation data but also intensive observation data. Verifications over the Korean Peninsula area of two experiments were performed against analysis and observation data. The results showed that the predictability of short-range forecast (1~2 day) was improved for geopotential height at middle level and temperature at lower level. In three precipitation cases, EXP improved the distribution of precipitation against CTL. In typhoon cases, the predictability of EXP for typhoon track was better than CTL, although both experiments simulated weaker intensity as compared with the observed data.

초단기 예측모델에서 지상 GPS 자료동화의 영향 연구 (A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model)

  • 김은희;안광득;이희춘;하종철;임은하
    • 대기
    • /
    • 제25권4호
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

KLAPS와 3DVAR를 이용한 ProbeX-2009 남·서해상 고층관측자료의 관측 시스템 실험 연구 (Observing System Experiments Using KLAPS and 3DVAR for the Upper-Air Observations over the South and West sea during ProbeX-2009)

  • 황윤정;하종철;김연희;김기훈;전은희;장동언
    • 대기
    • /
    • 제21권1호
    • /
    • pp.1-16
    • /
    • 2011
  • Numerical prediction capability has been improved over the decades, but progress of prediction for high-impact weather (HIW) was unsatisfactory. One reason of low predictability for HIW is lack of observation data. The National Institute of Meteorological Research (NIMR) has been performed observation program for improvement of predictability, and reduction in social and economical cost for HIW. As part of this observation program, summer intensive observation program (ProbeX-2009) was performed at the observation-gap areas from 25 August to 6 September 2009. Sounding observations using radiosonde were conducted in the Gisang2000 research vessel (R/V) from the Korea Meteorological Administration (KMA) over the West Sea and the Eardo R/V from the Korea Ocean Research and Development Institute (KORDI) over the South Sea. Observation System Experiment (OSE) is carried out to examine the effect of ProbeX-2009 data. OSEs using Korea Local Analysis and Prediction System (KLAPS) and Weather Research and Forecasting (WRF) Model are conducted to investigate the predictability for a short time forecast. And, OSEs using WRF/3DVAR system and WRF forecast model are conducted to study the predictability for an extended time. Control experiment (K_CTL and CNTL) used only GTS observation and experiment (K_EXP and SWEXP) used ProbeX-2009 data from two system are performed. ETS for 3hr accumulated rainfall simulated by KLAPS-WRF shows that K_EXP is higher than K_CTL. Also, ETS for 12hr accumulated rainfall of SWEXP from 3DVAR-WRF is higher than CNTL. The results indicate that observation over the ocean has positive impact on HIW prediction.

고해상도 수치예보모델을 위한 수도권지역의 상세한 도시특성정보 구축 및 사례 분석 (Construction and Case Analysis of Detailed Urban Characteristic Information on Seoul Metropolitan Area for High-Resolution Numerical Weather Prediction Model)

  • 이한경;지준범;이채연;민재식
    • 대기
    • /
    • 제29권5호
    • /
    • pp.567-583
    • /
    • 2019
  • In this study, the high-resolution numerical simulations considering detailed anthropogenic heat, albedo, emission and roughness length are analyzed by using single layer Urban Canopy Model (UCM) in Weather Research Forecast (WRF). For this, improved urban parameter data for Seoul Metropolitan Area (SMA) was collected from global data. And then the parameters were applied to WRF-UCM model after it was processed into 2-dimensional topographical data. The 6 experiments were simulated by using the model with each parameter and verified against observation from Automated Weather Station (AWS) and flux tower for the temperature and sensible heat flux. The data for sensible heat flux of flux towers on Jungnang and Bucheon, the temperature of AWS on Jungnang, Gangnam, Bucheon and Neonggok were used as verification data. In the case of summer, the improvement of simulation by using detailed anthropogenic heat was higher than the other experiments in sensible flux simulation. The results of winter case show improved in all simulations using each advanced parameters in temperature and sensible heat flux simulation. Improvement of urban parameters in this study are possible to reflect the heat characteristics of urban area. Especially, detailed application of anthropogenic heat contributed to the enhancement of predicted value for sensible heat flux and temperature.

기상청 전지구예측시스템 자료에서의 2016~2017년 북반구 블로킹 예측성 분석 (Predictability of Northern Hemisphere Blocking in the KMA GDAPS during 2016~2017)

  • 노준우;조형오;손석우;백희정;부경온;이정경
    • 대기
    • /
    • 제28권4호
    • /
    • pp.403-414
    • /
    • 2018
  • Predictability of Northern Hemisphere blocking in the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is evaluated for the period of July 2016 to May 2017. Using the operational model output, blocking is defined by a meridional gradient reversal of 500-hPa geopotential height as Tibaldi-Molteni Index. Its predictability is quantified by computing the critical success index and bias score against ERA-Interim data. It turns out that Northwest Pacific blockings, among others, are reasonably well predicted with a forecast lead time of 2~3 days. The highest prediction skill is found in spring with 3.5 lead days, whereas the lowest prediction skill is observed in autumn with 2.25 lead days. Although further analyses are needed with longer dataset, this result suggests that Northern Hemisphere blocking is not well predicted in the operational weather prediction model beyond a short-term weather prediction limit. In the spring, summer, and autumn periods, there was a tendency to overestimate the Western North Pacific blocking.

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

Nonlinear Kalman filter bias correction for wind ramp event forecasts at wind turbine height

  • Xu, Jing-Jing;Xiao, Zi-Niu;Lin, Zhao-Hui
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.393-403
    • /
    • 2020
  • One of the growing concerns of the wind energy production is wind ramp events. To improve the wind ramp event forecasts, the nonlinear Kalman filter bias correction method was applied to 24-h wind speed forecasts issued from the WRF model at 70-m height in Zhangbei wind farm, Hebei Province, China for a two-year period. The Kalman filter shows the remarkable ability of improving forecast skill for real-time wind speed forecasts by decreasing RMSE by 32% from 3.26 m s-1 to 2.21 m s-1, reducing BIAS almost to zero, and improving correlation from 0.58 to 0.82. The bias correction improves the forecast skill especially in wind speed intervals sensitive to wind power prediction. The fact shows that the Kalman filter is especially suitable for wind power prediction. Moreover, the bias correction method performs well under abrupt weather transition. As to the overall performance for improving the forecast skill of ramp events, the Kalman filter shows noticeable improvements based on POD and TSS. The bias correction increases the POD score of up-ramps from 0.27 to 0.39 and from 0.26 to 0.38 for down-ramps. After bias correction, the TSS score is significantly promoted from 0.12 to 0.26 for up-ramps and from 0.13 to 0.25 for down-ramps.