Browse > Article
http://dx.doi.org/10.12989/was.2020.30.4.393

Nonlinear Kalman filter bias correction for wind ramp event forecasts at wind turbine height  

Xu, Jing-Jing (International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Science)
Xiao, Zi-Niu (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences)
Lin, Zhao-Hui (International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Science)
Publication Information
Wind and Structures / v.30, no.4, 2020 , pp. 393-403 More about this Journal
Abstract
One of the growing concerns of the wind energy production is wind ramp events. To improve the wind ramp event forecasts, the nonlinear Kalman filter bias correction method was applied to 24-h wind speed forecasts issued from the WRF model at 70-m height in Zhangbei wind farm, Hebei Province, China for a two-year period. The Kalman filter shows the remarkable ability of improving forecast skill for real-time wind speed forecasts by decreasing RMSE by 32% from 3.26 m s-1 to 2.21 m s-1, reducing BIAS almost to zero, and improving correlation from 0.58 to 0.82. The bias correction improves the forecast skill especially in wind speed intervals sensitive to wind power prediction. The fact shows that the Kalman filter is especially suitable for wind power prediction. Moreover, the bias correction method performs well under abrupt weather transition. As to the overall performance for improving the forecast skill of ramp events, the Kalman filter shows noticeable improvements based on POD and TSS. The bias correction increases the POD score of up-ramps from 0.27 to 0.39 and from 0.26 to 0.38 for down-ramps. After bias correction, the TSS score is significantly promoted from 0.12 to 0.26 for up-ramps and from 0.13 to 0.25 for down-ramps.
Keywords
numerical simulation; wind power prediction; bias correction; nonlinear Kalman filter; WRF model;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bradford, K.T., Carpenter, R.L. and Shaw, B. (2010), "Forecasting southern plains wind ramp events using the WRF model at 3-km", Proceedings of the 9th Annual Student Conference, Atlanta, U.S.A, January.
2 Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2001), Wind Energy Handbook, John Wiley & Sons, Ltd, Chichester, West Sussex, England.
3 Chen, F. and Dudhia, J. (2001), "Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation", Mon. Wea. Rev., 129(4), 569-585. https://doi.org/10.1175/15200493(2001)129<0569:CAALSH>2.0.CO;2.   DOI
4 Chen T.H. and Tran, V.T. (2015), "Prospects of wind energy on Penghu Island, Taiwan", Wind Struct., 20(1), 1-13. https://doi.org/10.12989/was.2015.20.1.001.   DOI
5 Cheng, X.L., Li, J., Hu, F., Xu, J. and Zhu, R. (2015), "Refined numerical simulation in wind resource assessment", Wind Struct., 20(1), 59-74. http://dx.doi.org/10.12989/was.2015.20.1.059.   DOI
6 Chou M.D. and Suarez, M.J. (1994), "An efficient thermal infrared radiation parameterization for use in general circulation models", NASA Tech. Memo., NASA, U.S.A.
7 Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H. and Feitosa, E. (2008), "A review on the young history of the wind power short-term prediction", Renew. Sustain. Energy Rev., 12(6), 1725-1744. https://doi.org/10.1016/j.rser.2007.01.015.   DOI
8 Glahn, H.R. and Lowry, D.A. (1972), "The use of model output statistics (MOS) in objective weather forecasting", J. Appl. Meteor., 11(8), 1203-1211. https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.   DOI
9 Greaves, B., Collins, J., Parkes, J. and Tindal, A. (2009), "Temporal forecast uncertainty for ramp events", Wind Eng., 33(4), 309-320.   DOI
10 Gunter, W.S., Schroeder, J.L., Weiss, C.C. and Bruning, E.C. (2017), "Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas", Wind Struct., 24(2), 185-204. https://doi.org/10.12989/was.2017.24.2.185.   DOI
11 Hacker, J.P. and Rife, D.L. (2007), "A practical approach to sequential estimation of systematic error on near-surface mesoscale grids", Wea. Forecasting, 22(6), 1257-1273. https://doi.org/10.1175/2007WAF2006102.1.   DOI
12 Homleid, M. (1995), "Diurnal corrections of short-term surface temperature forecasts using Kalman filter", Wea. Forecasting, 10(4), 689-707. https://doi.org/10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2.   DOI
13 Hu, X.M., Klein, P.M. and Xue, M. (2013), "Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments", J. Geophys. Res., 118(18), 10490-10505. https://doi.org/10.1002/jgrd.50823.   DOI
14 Janjic, Z.I. (1994), "The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes", Mon. Weather Rev., 122(5), 927-945. https://doi.org/10.1175/15200493(1994)122<0927:TSMECM>2.0.CO;2   DOI
15 Giebel, G. (2001), "On the benefits of distributed generation of wind energy in Europe", Ph. D. Dissertation, University of Oldenburg, Dusseldorf, Germany.
16 Jolliffe, I.T. and Stephenson, D.B. (2012), Forecast Verification: A Practitioner's Guide in Atmospheric Science, (2th Edition), John Wiley & Sons, Ltd, West Sussex, England.
17 Lange, M. and Focken, U. (2006), Physical Approach to Short-term Wind Power Prediction, Springer, Berlin, Heidelberg, Germany.
18 Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. basic Eng., 82(1), 35-45. https://doi.org/10.1115/1.3662552.   DOI
19 Kalman, R.E. and Bucy, R.S. (1961), "New results in linear filtering and prediction theory", J. basic Eng., 83(1), 95-108. https://doi.org/10.1115/1.3658902.   DOI
20 Kalnay, E. (2002), Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, Cambridgeshire, U.K.
21 Lin, Y.L., Farley, R.D. and Orville, H.D. (1983), "Bulk parameterization of the snow field in a cloud model", J. Climate Appl. Meteor., 22(6), 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.   DOI
22 Louka, P., Galanis, G., Siebert, N., Kariniotakis, G., Katsafados, P., Pytharoulis, I. and Kallos, G. (2008), "Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering", J. Wind Eng. Ind. Aerod., 96(12), 2348-2362. https://doi.org/10.1016/j.jweia.2008.03.013.   DOI
23 McCollor, D. and Stull, R. (2008), "Hydrometeorological accuracy enhancement via post-processing of numerical weather forecasts in complex terrain", Wea. Forecasting, 23(1), 131-144. https://doi.org/10.1175/2007WAF2006107.1.   DOI
24 Mellor, G.L. and Yamada, T. (1982), "Development of a turbulence closure model for geophysical fluid problems", Rev. Geophys. Space Phys., 20(4), 851-875. https://doi.org/10.1029/RG020i004p00851.   DOI
25 Kain, J.S. (2004), "The Kain-Fritsch convective parameterization: An update", J. Appl. Meteor., 43(1), 170-181. https://doi.org/10.1175/15200450(2004)043%3C0170:TKCPAU%3E2.0.CO;2.   DOI
26 Zhang, H., Pu, Z. and Zhang, X. (2013), "Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain", Wea. Forecasting, 28(3), 893-914. https://doi.org/10.1175/WAF-D-12-00109.1.   DOI
27 Yang, Q., Berg, L.K., Pekour, M., Fast, J.D., Newsom, R.K., Stoelinga, M. and Finley, C. (2013), "Evaluation of WRF-predicted near-hub-height winds and ramp events over a Pacific Northwest site with complex terrain", J. Appl. Meteor. Climatol., 52(8), 1753-1763. https://doi.org/10.1175/JAMC-D-12-0267.1   DOI
28 Yim, S.H., Fung, J.C., Lau, A.K. and Kot, S.C. (2007), "Developing a high-resolution wind map for a complex terrain with a coupled MM5 CALMET system", J. Geophys. Res., 112(D5), https://doi.org/10.1029/2006JD007752.
29 Zack, J.W. (2007), "Optimization of wind power production forecast performance during critical periods for grid management", In Proceedings of the European Wind Energy Conference EWEC, Milano. Italy.
30 Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A. (1997), "Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave", J. Geophys. Res., 102(D14), 16663-16682. https://doi.org/10.1029/97JD00237.   DOI
31 Muller, M.D. (2011), "Effects of model resolution and statistical postprocessing on shelter temperature and wind forecasts", J. Appl. Meteor., 50(8), 1627-1636. https://doi.org/10.1175/2011JAMC2615.1.   DOI
32 Powers, J.G. (2007), "Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) Model", Mon. Weather. Rev., 135(9), 3134-3157. https://doi.org/10.1175/MWR3459.1.   DOI
33 Rife, D.L. and Davis, C.A. (2005), "Verification of temporal variations in mesoscale numerical wind forecasts", Mon. Wea. Rev., 133(11), 3368-3381. https://doi.org/10.1175/MWR3052.1.   DOI
34 Rincon, A., Jorba, O. and Baldasano, J.M. (2010), "Development of a short-term irradiance prediction system using post-processing tools on WRF-ARW meteorological forecasts in Spain", 10th EMS Annual Meeting, Zurich, Switzerland, September.
35 Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D. M., Duda, M.G., Huang, X., Wang, W. and Powers, J.G. (2008), "A description of the Advanced Research WRF version 3", NCAR Technical Note, NCAR, U.S.A.
36 Stensrud, D.J. and Yussouf, N. (2003), "Short-range ensemble predictions of 2-m temperature and dewpoint temperature over New England", Mon. Weather Rev., 131(10), 2510-2524. https://doi.org/10.1175/15200493(2003)131%3C2510:SEPOMT%3E2.0.CO;2.   DOI
37 Xu, J.J., Hu, F., Xiao, Z.N. and Li, J. (2013), "Analog bias correction of numerical model on wind power prediction", J. Appl. Meteorol. Sci. (In Chinese), 24(6), 731-740.
38 Delle Monache, L., Nipen, T., Liu, Y., Roux, G. and Stull, R. (2011), "Kalman filter and analog schemes to post-process numerical weather predictions", Mon. Weather. Rev., 139, 3554-3570. https://doi.org/10.1175/2011MWR3653.1.   DOI
39 Xu, J.J., Hu, F., Xiao, Z.N. and Cheng, X.L. (2014), "Bias correction to wind direction forecast by the circular - circular regression method", Atmos. Oceanic Sci. Lett., 7, 87-91.   DOI
40 Delle Monache, L., Nipen, T., Deng, X., Zhou, Y. and Stull, R. (2006), "Ozone ensemble forecasts: 2. A Kalman-filter predictor bias correction", J. Geophys. Res., 111, D05308, https://doi.org/10.1029/2005JD006311.   DOI
41 Monache, L.D., Wilczak, J., McKeen, S., Grell, G., Pagowski, M., Peckham, S., Stull, R., Mchenry, J. and McQueen, J. (2008), "A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone", Tellus, 60(2), 238-249. https://doi.org/10.1111/j.1600-0889.2007.00332.x.   DOI
42 Deppe, A.J., Gallus, W.A. and Takle, E.S. (2013), "A WRF ensemble for improved wind speed forecasts at turbine height", Wea. Forecasting, 28(1), 212-228. https://doi.org/10.1175/WAF-D-11-00112.1.   DOI
43 Galanis, G., Louka, P., Katsafados, P., Pytharoulis, I. and Kallos, G. (2006), "Applications of Kalman filters based on non-linear functions to numerical weather predictions", Ann. Geophys., 24, 2451-2460.   DOI
44 Dhunny, A., Lollchund, M. and Rughooputh, S.D.D.V. (2015), "A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)", Wind Struct., 20(4), 565-578. http://dx.doi.org/10.12989/was.2015.20.4.565.   DOI
45 Francis, N. (2008), Predicting Sudden Changes in Wind Power Generation, North American Windpower, October.
46 Freedman, J., Markus, M. and Penc, R. (2008), "Analysis of west Texas wind plant ramp-up and ramp-down events", AWS Truewind Report, AWS Truepower, U.S.A.
47 Crochet, P. (2004), "Adaptive Kalman filtering of 2-m temperature and 10-m wind-speed forecasts in Iceland", Meteor. Appl., 11, 173-187.   DOI