• Title/Summary/Keyword: numerical test

Search Result 4,783, Processing Time 0.034 seconds

Optimization of Ingredient Mixing Ratio for Preparation of Chinese Radish (Raphanus sativus L.) Jam (무 잼 재료 혼합비율의 최적화)

  • Park, Jung-Eun;Kim, Mi-Jung;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.235-243
    • /
    • 2009
  • This study was performed to find the optimum ratio of ingredients in the Chinese radish jam. The experiment was designed according to the RSM (response surface methodology), which included 18 experimental points with 4 replicates for three independent variables (sugar $45{\sim}70%$, pectin $0.5{\sim}2.0.%$, citric acid $0.2{\sim}0.5%$). The compositional and functional properties of the prepared products were measured, and these values were applied to the mathematical models. By use of F-test, sweetness, color values (L, a, b), and firmness were expressed by a linear model, while the sensory characteristics (color, smell, taste, texture and overall acceptance) were by a quadratic model. In the numeric optimization, the optimal ingredient amounts were 53.7% sugar, 1.0% pectin, and 0.3% citric acid. And in the graphical optimization, 53.9% sugar, 1.0% pectin, and 0.3% citric acid; these data were equivalent to 0.6985 desirability, indicating that the values were almost equivalent to the numerical optimization points. The above results demonstrate the feasibility of Chinese radish jam, and therefore, the commercialization of a Chinese radish jam marketed as a functional food is deemed possible.

Stability Estimation of the Closely-spaced Twin Tunnels Located in Fault Zones (단층대에 위치한 근접병설터널의 안정성평가)

  • Hwang, Jae-Seok;Kim, Ju-Hwan;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.170-185
    • /
    • 2018
  • The effect of fault on the stability of the closely-spaced twin tunnels located in fault zones was investigated by numerical analyses and scaled model tests on condition of varying widths, inclinations and material properties of fault. When obtaining the strength/stress ratios of pillar between twin tunnels, three different stresses were used which were measured at the middle point of pillar, calculated to whole average along the pillar section and measured at the left/right edges of pillar. Among them, the method by use of the left/right edges turned out to be the most conservative stability estimation regardless of the presence of fault and reflected the excavating procedures of tunnel in real time. It was also found that the strength/stress ratios of pillar were decreased as the widths and inclinations of fault were increased and as the material properties of fault were decreased on condition using the stresses measured at the left/right edges of pillar. As a result of scaled model tests, it was found that the model with fault showed less crack initiating pressure than the model without fault. As the width of fault was larger, tunnel stability was decreased. The fault had also a great influence on the failure behavior of tunnels, such as the model without fault showed failure cracks generated horizontally at the left/right edges of pillar and at the sidewalls of twin tunnels, whereas the model with fault showed failure cracks directionally generated at the center of pillar located in the fault zone.

Sensitivity Analysis of Satellite BUV Ozone Profile Retrievals on Meteorological Parameter Errors (기상 입력장 오차에 대한 자외선 오존 프로파일 산출 알고리즘 민감도 분석)

  • Shin, Daegeun;Bak, Juseon;Kim, Jae Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.481-494
    • /
    • 2018
  • The accurate radiative transfer model simulation is essential for an accurate ozone profile retrieval using optimal estimation from backscattered ultraviolet (BUV) measurement. The input parameters of the radiative transfer model are the main factors that determine the model accuracy. In particular, meteorological parameters such as temperature and surface pressure have a direct effect on simulating radiation spectrum as a component for calculating ozone absorption cross section and Rayleigh scattering. Hence, a sensitivity of UV ozone profile retrievals to these parameters has been investigated using radiative transfer model. The surface pressure shows an average error within 100 hPa in the daily / monthly climatological data based on the numerical weather prediction model, and the calculated ozone retrieval error is less than 0.2 DU for each layer. On the other hand, the temperature shows an error of 1-7K depending on the observation station and altitude for the same daily / monthly climatological data, and the calculated ozone retrieval error is about 4 DU for each layer. These results can help to understand the obtained vertical ozone information from satellite. In addition, they are expected to be used effectively in selecting the meteorological input data and establishing the system design direction in the process of applying the algorithm to satellite operation.

A Study of Structural Stress Technique for Fracture Prediction of an Auto-Mobile Clutch Snap-Ring (클러치 스냅링부 파괴 예측을 위한 구조응력기법 연구)

  • Kim, Ju Hee;Myeong, Man Sik;Oh, Chang Sik;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • The endurance reliability assessment of a highly complex mechanism is generally predicted by the fatigue life based on simple stress analysis. This study discusses various fatigue life assessment techniques for an automobile clutch snap ring. Finite element analyses were conducted to determine the structural stress on the snap ring. Structural stress that is insensitive in regards to the mesh size and type definition is presented in this study. The structural stress definition is consistent with elementary structural mechanics theory and provides an effective measure of a stress state that pertains to fatigue behavior of welded joints in the form of both membrane and bending components. Numerical procedures for both solid models and shell or plate element models are presented to demonstrate the mesh-size insensitivity when extracting the structural stress parameters. Conventional finite element models can be used with the structural stress calculations as a post-processing procedure. The two major implications from this research were: (a) structural stresses pertaining to fatigue behavior can be consistently calculated in a mesh-insensitive manner regardless of the types of finite element models; and (b) by comparing with the clutch snap-ring fatigue test data, we should predict the fatigue fractures of an automobile clutch snap ring using this method.

Phenotypic Characterization of Methylotrophic N2-Fixing Bacteria Isolated from Rice (Oryza sativa L.) (벼(oryza sativa L.)에서 분리한 Methylotrophic N2-Fixing Bacteria의 형태학적 특성)

  • Madhaiyan, Munusamy;Park, Myoung-Su;Lee, Hyoung-Seok;Kim, Chung-Woo;Lee, Kyu-Hoi;Seshadri, Sundaram;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.46-53
    • /
    • 2004
  • In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf, stem, grain, root and rhizosphere soil sainples of four rice cultivars collected from three regions of Korea. Thirty five pigmented and five non-pigmented isolates showing characteristic growth on methanul were obtained. When phylotypes were defined by performing numerical analysis of 42 characteristics, four distinct clusters were formed. While two clusters, I and IV diverged on the basis of nitrate and nitrite reduction, other two clusters, comprising only pink pigmented colonies, diverged on the basis of cellulase activity. Out of the two reference strains used in the analysis, Methyhbacterium extorquens AM1 diverged from all the clusters and M. fujisawaense KACC 10744 grouped under cluster III. All the isolates were positive for urease, oxidase, catalase and pectinase activity and negative for indole production, MR and VP test, $H_2S$ production, starch, and casein hydrolysis. No clusters were found to possess thermotolerant isolates, as no growth of the isolates was observed at $45^{\circ}C$. Two strains in cluster I were found to possess gelatin hydrolysis and methane utilizing properties respectively. Most of the isolates in all the four clusters utilized monosaccliarides, disaccharide and polyols as carbon source. Six isolates showed considerable nitrogenase activity ranging from 86.2 to $809.9nmol\;C_2H_4\;h^{-1}\;mg^{-1}$ protein.

Development of a n-path algorithm for providing travel information in general road network (일반가로망에서 교통정보제공을 위한 n-path 알고리듬의 개발)

  • Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.135-146
    • /
    • 2004
  • For improving the effectiveness of travel information, some rational paths are needed to provide them to users driving in real road network. To meet it, k-shortest path algorithms have been used in general. Although the k-shortest path algorithm can provide several alternative paths, it has inherent limit of heavy overlapping among derived paths, which nay lead to incorrect travel information to the users. In case of considering the network consisting of several turn prohibitions popularly adopted in real world network, it makes difficult for the traditional network optimization technique to deal with. Banned and penalized turns are not described appropriately for in the standard node/link method of network definition with intersections represented by nodes only. Such problem could be solved by expansion technique adding extra links and nodes to the network for describing turn penalties, but this method could not apply to large networks as well as dynamic case due to its overwhelming additional works. This paper proposes a link-based shortest path algorithm for the travel information in real road network where exists turn prohibitions. It enables to provide efficient alternative paths under consideration of overlaps among paths. The algorithm builds each path based on the degree of overlapping between each path and stops building new path when the degree of overlapping ratio exceeds its criterion. Because proposed algorithm builds the shortest path based on the link-end cost instead or node cost and constructs path between origin and destination by link connection, the network expansion does not require. Thus it is possible to save the time or network modification and of computer running. Some numerical examples are used for test of the model proposed in the paper.

Optimization of Electro-UV-Ultrasonic Complex Process for E. coli Disinfection using Box-Behnken Experiment (Box-Behnken법을 이용한 E. coli 소독에서 전기-UV-초음파 복합 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • This experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV-ultrasonic complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV-ultrasonic process were mathematically described as a function of parameters power of electrolysis ($X_1$), UV ($X_2$), and ultrasonic process ($X_3$) being modeled by use of the Box-Behnken technique, which was used for fitting 2nd order response surface model. The application of RSM yielded the following regression equation, which is empirical relationship between the residual E. coli number (Ln CFU) in water and test variables in coded unit: residual E. coli number (Ln CFU) = 23.69 - 3.75 Electrolysis - 0.67 UV - 0.26 Ultrasonic - 0.16 Electrolysis UV + 0.05 Electrolysis Ultrasonic + 0.27 $Electrolysis^2$ + 0.14 $UV^2$ - 0.01 $Ultrasonic^2$). The model predictions agreed well with the experimentally observed result ($R^2$ = 0.983). Graphical 2D contour and 3D response surface plots were used to locate the optimum range. The estimated ridge of maximum response and optimal conditions for residual E. coli number (Ln CFU) using 'numerical optimization' of Design-Expert software were 1.47 Ln CFU/L and 6.94 W of electrolysis, 6.72 W of UV and 14.23 W of ultrasonic process. This study clearly showed that response surface methodology was one of the suitable methods to optimize the operating conditions and minimize the residual E. coli number of the complex disinfection.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Analysis of Patents regarding Stabilization Technology for Steep Slope Hazards (급경사지재해 안정화기술에 대한 특허분석)

  • Song, Young-Suk;Kim, Jae-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.257-269
    • /
    • 2010
  • We analyzed patent trends regarding stabilization technology for steep slope hazards, focusing on patents applied for and registered in Korea, the USA, Japan, and Europe. The technology was classified into four groups at the second classification step: prediction techniques, instrumentation techniques, countermeasure/reinforcement/mitigation techniques, and laboratory tests. A total of 2,134 patents were selected for the final effective analysis. As a result of portfolio analysis using the correlation between the number of patents and the applicant for each patent, the Korean and USA situations were classified as belonging to the developing period, and the Japanese and European situations were classified as belonging to the ebbing period. In particular, patent activity in Korea has been enlivened by government-led research. As a result of technology analysis at the second classification step, prediction techniques arising from Japan are evaluated as a competitive power technique, and laboratory tests arising from the USA are evaluated as a competitive power technique. However, prediction techniques and laboratory tests arising from Korea are evaluated as a blank technique. According to the prediction results regarding future research and developments, a new finite element analysis method and a numerical model should be established as part of prediction techniques, as well as sensors, and hazard prediction should be developed by integrating information and equipment using IT technology as part of instrumentation techniques. In addition, improvements to existing structures for erosion control and the development of new slope-reinforcement methods are required as part of countermeasure/reinforcement/mitigation techniques, and new laboratory apparatus and methods with an optimizing structure should be developed as part of laboratory tests.

Study on Performance of Vertical-axis Tidal Turbines Applied to the Discharged Channel of Power Plant (조류발전용 수직축 터빈의 방수로 설치에 따른 성능에 관한 연구)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • Thermal and nuclear power plants on shore commonly use the sea water for cooling facility. Discharged cooling water has the high kinematic energy potential due to amount of water flux. Numerical analysis was made to find the suitable combinations between the arrangement of tidal turbines and the overall dimensions of the discharged channel. Several parameters such as the turbine diameter to inlet size, and the axial distance to turbine size were investigated. Power coefficients for various test conditions were also compared to see the effect of inlet configurations such as single inlet and dual inlet. For the single inlet, the mean power coefficient appeared to be gradually decreased with increasing distance, and the maximum power was obtained when the turbine diameter was same as the inlet diameter. For the dual inlet, the tendency was similar so that the better result when the turbine diameter was same as the inlet diameter. It is expected that the present methodology can be extensively utilized to harness the high kinetic energy flow of the discharge channel of power plant.