• Title/Summary/Keyword: numerical dispersion

Search Result 589, Processing Time 0.022 seconds

Numerical Simulation on Dispersion of NOx in Vehicular Exhaust Gas around Buildings (빌딩주변 자동차 배기가스중의 NOx 분산에 관한 수치해석)

  • Jeon, Yeong Nam;Jeong, O Jin;Song, Hyeong Un
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.655-660
    • /
    • 2004
  • This paper demonstrates the numerical simulation of three dimensional flow pattern for vehicular exhaust dispersion in the street canyons. The wind flow around buildings in urban is computed by the SIMPLEST method. The convection-diffusion equation was used to compute the $NO_X$ concentration level near buildings. Details are given of important boundary conditions and turbulence quantities variations. The simple turbulence model was used for unisotropic viscous effect. A control-volume based finite-difference method with the upwind scheme is employed for discretization equation. The simple turbulence model applied in this study has been verified through comparison between predicted and measured data near buildings. By the predictive results, the updraft induced by the presence of high-rise buildings is important in the transport of street level pollutant out from the street canyons. Our suggestion for reducing ground level pollution is to have high-rise buildings constructed or to reduce the channelling effect of street canyons.

Particle Dispersion and Fine Scale Eddies in Wall Turbulence (벽면난류에 대한 미세와 구조와 입자분산)

  • Kang, Shin-Jeong;Tanahashi, Mamoru;Miyauchi, Toshio
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1101-1106
    • /
    • 2006
  • To investigate a relation between fine scale eddies and particle dispersion in a near-wall turbulence, direct numerical simulations of turbulent channel flow laden particle are performed for $Re_{\tau}$=180. The motions of 0,8 million particles are calculated for several particle response times ($t_p$) which is the particle response time based on stokes’ friction law. The number density of particles has a tendency to increase with approaching the near-wall regions ($y^+$<20) except for cases of very small and large particle response times (i.e. $t_p$=0.02 and 15). Near the wall, the behavior and distribution of particles are deeply associated with the fine scale eddies, and are dependent on particle response times and a distance from the wall. The Stokes number that causes preferential distribution in turbulence is changed by a distance from the wall. The influential Stokes number based on the Burgers' vortex model is derived by using the time scale of the fine scale eddies. The influential Stokes number is also dependent on a distance from the wall and shows large value in the buffer layer.

Temporal and Spatial Spreading Characteristic of Drift Soil due to the Reclamation in the Pusan Port (해양 매립 및 준설토 투기에 따른 부유사 확산의 시.공간적 특성에 관한 연구)

  • 김용원;김종인;윤한삼;홍도웅
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.196-203
    • /
    • 2000
  • In this study, the evaluation method of diffusion characteristics of Suspended Soli&SS) and the generation limit(source and thick) are investigated, which is significantly affecting on marine examined by construction works such as dredging and reclamation. Dispersion characteristics of SS is examined by hydraulic tests and numerical works in consideration with the Pusan Port. Hydraulic model test was performed in 2-D wave flume to find the limit wave conditon of re-suspension of solid as well as the time dependent characteristics of settlement The results obtainded in the study are as follows; 1) The quantituative evaluation af SS is the basic parameter of marine environmental impact assessment in related with the port development The SS increases as the water content of sea bed solid increases and the density decreases. 2) The sea bed solid in Sinsundai area, Pusan Port has the water content range of 83~157% 3) The ratio of suspension velocity against settlement velocity is about 0.25 and SS concentration converges as the wave heigh. 4) The SS increases 2 time when time step increases 3 time(10 sec to 30 sec) in numerical simulation It means that the effect of the time step should be checked in detail to stable. The diffusion The diffusion coefficient are Affiected senstively in the dispersion process while sea ved friction coefficinet have not strong relation in the simulated area

  • PDF

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Analysis of Stem Wave due to Long Breakwaters at the Entrance Channel

  • Kwon, Seong-Min;Moon, Seung-Hyo;Lee, Sang-Heon;Yoo, Jae-Woong;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • Recently, a new port reserves deep water depth for safe navigation and mooring, following the trend of larger ship building. Larger port facilities include long and huge breakwaters, and mainly adopt vertical type considering low construction cost. A vertical breakwater creates stem waves combining inclined incident waves and reflected waves, and this causes maneuvering difficulty to the passing vessels, and erosion of shoreline with additional damages to berthing facilities. Thus, in this study, the researchers have investigated the response of stem waves at the vertical breakwater near the entrance channel and applied numerical models, which are commonly used for the analysis of wave response at the harbor design. The basic equation composing models here adopted both the linear parabolic approximation adding the nonlinear dispersion relationship and nonlinear parabolic approximation adding a linear dispersion relationship. To analyze the applicability of both models, the research compared the numerical results with the existing hydraulic model results. The gap of serial breakwaters and aligned angles caused more complicated stem wave generation and secondary stem wave was found through the breakwater gap. Those analyzed results should be applied to ship handling simulation studies at the approaching channels, along with the mooring test.

Modeling wave propagation in graphene sheets influenced by magnetic field via a refined trigonometric two-variable plate theory

  • Fardshad, R. Ebrahimi;Mohammadi, Y.;Ebrahimi, F.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • In this paper, the magnetic field influence on the wave propagation characteristics of graphene nanosheets is examined within the frame work of a two-variable plate theory. The small-scale effect is taken into consideration based on the nonlocal strain gradient theory. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. A derivation of the differential equation is conducted, employing extended principle of Hamilton and solved my means of analytical solution. A refined trigonometric two-variable plate theory is employed in Kinematic relations. The scattering relation of wave propagation in solid bodies which captures the relation of wave number and the resultant frequency is also investigated. According to the numerical results, it is revealed that the proposed modeling can provide accurate wave dispersion results of the graphene nanosheets as compared to some cases in the literature. It is shown that the wave dispersion characteristics of graphene sheets are influenced by magnetic field, elastic foundation and nonlocal parameters. Numerical results are presented to serve as benchmarks for future analyses of graphene nanosheets.

Development of Sequential Mixing Model for Analysis of Shear Flow Dispersion (전단류 분산 해석을 위한 순차혼합모형의 개발)

  • Seo, Il Won;Son, Eun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.335-344
    • /
    • 2006
  • In this study, sequential mixing model (SMM) was proposed based on the Taylor's theory which can be summarized as the fact that longitudinal advection and transverse diffusion occur independently and then the balance between the longitudinal shear and transverse mixing maintains. The numerical simulation of the model were performed for cases of different mixing time and transverse velocity distribution, and the results were compared with the solutions of 1-D longitudinal dispersion model (1-D LDM) and 2-D advection-dispersion model (2-D ADM). As a result it was confirmed that SMM embodies the Taylor's theory well. By the comparison between SMM and 2-D ADM, the relationship between the mixing time and the transverse diffusion coefficient was evaluated, and thus SMM can integrate 2-D ADM model as well as 1-D LDM model and be an explanatory model which can represents the shear flow dispersion in a visible way. In this study, the predicting equation of the longitudinal dispersion coefficient was developed by fitting the simulation results of SMM to the solution of 1-D LDM. The verification of the proposed equation was performed by the application to the 38 sets of field data. The proposed equation can predict the longitudinal dispersion coefficient within reliable accuracy, especially for the river with small width-to-depth ratio.

A Note on Quartile (4분위수에 대한 메모)

  • 박동준;황현미
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.150-155
    • /
    • 1998
  • It is necessary to describe a data set after collection of data in elementary statistics course. Two major numerical summary of the data set may be measures of central location and dispersion. There are various unmerical summary methods in presenting how data are dispersed and each method has its own advantages and disadvantages. Quartiles are discussed among several methods to describe dispersion of data set. When data type is discrete, exact quartile values are sometimes ambiguous to find, whereas exact quartile values are obtained for contionuous data. Examples of both data types are given. Programs listed below may be used to provide quartiles in MINITAB and SAS.

  • PDF

Multivariate EWMA Control Charts for Monitoring Dispersion Matrix

  • Chang Duk-Joon;Lee Jae Man
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.265-273
    • /
    • 2005
  • In this paper, we proposed multivariate EWMA control charts for both combine-accumulate and accumulate-combine approaches to monitor dispersion matrix of multiple quality variables. Numerical performance of the proposed charts are evaluated in terms of average run length(ARL). The performances show that small smoothing constants with accumulate-combine approach is preferred for detecting small shifts of the production process.

TM and TE Modes in Multiple-Ridged Circular Waveguides (다중 Ridge 원형 도파관의 TM과 TE 모우드 해석)

  • 유종원;명노훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.440-446
    • /
    • 1996
  • The multiple-ridged circular waveguides is analyzed using Fourier series and the mode matching technique. The enforcement of the boundary conditions yields the simultaneous equations for the field coefficient inside the waveguides. The simultaneous equations are solved to represent a dispersion relation in an analytic series form. The numerical computation is performed to illustrate the behavior of the cutoff wavenumbers in terms of number, length and angle of ridges. The presented series solution is exact and rapidly-convergent so that it is efficient for numerical computation. A simple dispersion relation based on the dominant mode analysis is obtained and is shown to be very accurate for most practical applications.

  • PDF