DOI QR코드

DOI QR Code

Development of Sequential Mixing Model for Analysis of Shear Flow Dispersion

전단류 분산 해석을 위한 순차혼합모형의 개발

  • 서일원 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 손은우 (서울대학교 공과대학 지구환경시스템)
  • Received : 2005.08.05
  • Accepted : 2006.05.07
  • Published : 2006.07.31

Abstract

In this study, sequential mixing model (SMM) was proposed based on the Taylor's theory which can be summarized as the fact that longitudinal advection and transverse diffusion occur independently and then the balance between the longitudinal shear and transverse mixing maintains. The numerical simulation of the model were performed for cases of different mixing time and transverse velocity distribution, and the results were compared with the solutions of 1-D longitudinal dispersion model (1-D LDM) and 2-D advection-dispersion model (2-D ADM). As a result it was confirmed that SMM embodies the Taylor's theory well. By the comparison between SMM and 2-D ADM, the relationship between the mixing time and the transverse diffusion coefficient was evaluated, and thus SMM can integrate 2-D ADM model as well as 1-D LDM model and be an explanatory model which can represents the shear flow dispersion in a visible way. In this study, the predicting equation of the longitudinal dispersion coefficient was developed by fitting the simulation results of SMM to the solution of 1-D LDM. The verification of the proposed equation was performed by the application to the 38 sets of field data. The proposed equation can predict the longitudinal dispersion coefficient within reliable accuracy, especially for the river with small width-to-depth ratio.

본 연구에서는 Taylor의 이론, 즉 종방향 이송과 횡방향 확산이 서로 독립적으로 일어나며 두 과정이 서로 균형을 이룬다는 개념을 바탕으로 순차혼합모형을 제안하였다. 서로 다른 혼합시간과 유속 분포 등을 사용하여 수치모의를 실시하였으며, 여기서 얻어진 단면평균 농도분포를 1차원 종분산모형과 2차원 이송-분산 모형과 비교하였다. 그 결과, 순차혼합모형이 1차원 종분산모형으로 요약되는 Taylor의 이론을 잘 구현하고 있음을 알 수 있었다. 2차원이송-확산모형과의 비교를 통해 혼합 시간과 횡확산계수와의 관계를 밝힐 수 있었으며, 따라서 순차혼합모형이 1차원 종분산모형뿐 아니라 2차원 이송-분산모형까지 연계하여 전단류 분산을 통합적으로 설명하는 모형임을 알 수 있었다. 본 연구에서는 순차혼합모형의 수치모의 결과와 1차원 종분산모형과의 적합을 통해 종분산계수를 결정하고, 회귀식을 사용해 종분산계수 추정식을 제안하였다. 본 연구에서 제안한 종분산계수 추정식은 38개의 현장실험자료를 사용하여 검증하였다. 그 결과, 하폭 대 수심 비가 비교적 작은 하천에 대해서 높은 신뢰성을 나타내었으며, 대체적으로 기존의 경험식과 비슷한 신뢰도를 나타내었다.

Keywords

References

  1. 강주환, 이길성(1987) 대류 분산 모형에 관한 유한차분근사의 특성, 대한토목학회 논문집, 대한토목학회, 제7권 제4호, pp. 147-157
  2. 서일원(2004) 하천흐름 및 하상변동 해석 기술 개발, 기술보고서 No. 2-3-1, 수자원의 지속적 확보기술개발 사업단
  3. 서일뤈, 김대근(1994) Eulerian-Lagrangian 방법을 이용한 1차원종확산방정식의 수치모형. 한국수문학회지, 한국수문학회, 제27권 제2호, pp. 155-166
  4. Chatwin, P.C. (1970) The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43, pp. 321-352 https://doi.org/10.1017/S0022112070002409
  5. Deng, Z., Singh, V.P., and Bengtsson, L. (2001) Longitudinal dispersion coefficient in straight river. J. Hydraul Engrg. 127 (11), pp. 919-927 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(919)
  6. Fischer, H.B. (1966) Longitudinal dispersion in laboratory and natural streams. Rep. No. KH-R-12, Keck Laboratory of Hydraulic and Water Resources, California Inst. Of Tech., Pasadena, California
  7. Fischer, H.B. (1968) Dispersion predictions in natural streams. J. Sanit. Eng. Div, ASCE. 94(5), pp. 927-943
  8. Fischer, H.B. (1975) Discussion of Simple method for predicting dispersion in stream by R. S. McQuivey and T. N. Keefer. J. Environ. Eng. Div.. ASCE. 101(3), pp. 453-455
  9. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J., and Brooks, N. H. (1979) Mixing in inland and coastal waters, Academic, New York
  10. Godfrey, R.G and Frederick, B.J. (1970) Stream dispersion at selected sites. U.S. Geological Survey Prof. Paper 433-K, Washington, D.C
  11. Iwasa, Y., and Aya, S. (1991) Predicting longitudinal dispersion coefficient in open-channel flow. Proc, Int. Symp. on Envir. Hydr., Hong Kong, pp. 505-510
  12. Liu, H. (1977) Predicting dispersion coefficient of stream. J. Envir. Engrg. Div. ASCE. 103(1), pp. 59-69
  13. McQuivey, R.S. and Keefer, T.N. (1974) Simple method for predicting dispersion in streams. J. Envir. Engrg. Div., ASCE. 100(4), pp. 997-1011
  14. Nordin, C.F., and Sabol, G.V. (1974) Empirical data on longitudinal dispersion in rivers. U.S. Geological Survey Water Resour. Investigation 20-74, Washington, D.C
  15. Noye, J. (1987) Numerical Modeling: Application to Marine System, ELSEVIER SCIENCE PUBLISHERS B.V
  16. Rutherford, J.C. (1994) River Mixing, Wiley, Chichester, U.K
  17. Seo, I.W. and Cheong, T.S. (1998) Predicting longitudinal dispersion coefficient in natural streams. J. Hydraul. Engrg. 124(1), pp. 25-32 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25)
  18. Taylor, GI. (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London, Ser. A, 219, pp. 186-203
  19. Taylor, GI. (1954) Dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. London, Ser. A, 223, pp. 446-468
  20. White, W.R., Milli, H., and Crabbe, A.D. (1973) Sediment transport: an appraisal methods, Vol. 2: Performance of theoretical methods when applied to flume and field data. Hydr. REs. Station Rep., No. IT119, Wallingford, U.K
  21. Yotsukura, N., Fischer, H.B., and Sayre, WW. (1970) Measurement of mixing characteristics of the Missouri River between Sioux city, Iowa, and Plattsmouth, Nebraska. U.S. Geological Survey Water-Supply Paper 1899-G,Washington, D.C