• 제목/요약/키워드: numerical differentiation

검색결과 117건 처리시간 0.026초

격막 설치에 따른 비선형 슬로싱 특성 연구 (Characteristic Analysis of Nonlinear Sloshing in Baffled Tank)

  • 이홍우;조진래
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1455-1462
    • /
    • 2005
  • In this paper, we intend to introduce a nonlinear finite element method based on the fully nonlinear potential flow theory in order to simulate the large amplitude sloshing flow in two-dimensional baffled tank subject to horizontally forced excitation. The free surface is tracked by a direct time differentiation scheme with the four-step predictor-corrector time integration method. The flow velocity is accurately recovered from the velocity potential by second-order least square method. In order to maintain the finite element mesh regularity and total mass, the semi-Lagrangian surface tracking method with area conservation is applied. According to the numerical formulae, we perform the parametric experiments by varying the installation height and the opening width of baffles, in order to examine the effects of baffle on the nonlinear liquid sloshing. From the numerical results, the hydrodynamic characteristics of the large amplitude sloshing are investigated.

수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석 (Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method)

  • 이상훈;장건희
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.746-753
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

A measuring system for determination of a cantilever beam support moment

  • Loktionov, Askold P.
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.431-439
    • /
    • 2017
  • This investigation is aimed to develop a model of experimental-computation determination of a support moment of a cantilever beam loaded with concentrated force at its end including the optimal choice of coordinates of deflection data points and parameters of transformation of deflection data in case of insufficient accuracy of the assignment of initial parameters (support settlement, angle of rotation of the bearing section) and cantilever beam length. The influence of distribution and characteristics of sensors on the cantilever beam on the accuracy of determining the support moment which improves in the course of transition from the uniform distribution of sensors to optimal non-uniform distribution is shown. On the basis of the theory of inverse problems the method of transformation reduction at numerical differentiation of deflection functions has been studied. For engineering evaluation formulae of uncertainty estimate to determine a support moment of a cantilever beam at predetermined uncertainty of measurements using sensors have been obtained.

강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 - (A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem -)

  • 조맹효;김현기
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석 (Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

수학적 섭동법을 이용한 저널과 스러스트가 연성된 유체 동압 베어링의 동특성 계수 해석 (Determination of the Dynamic Coefficients of the Coupled Journal and Thrust Bearings by the Perturbation Method)

  • 이상훈;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.666-671
    • /
    • 2006
  • This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. The Reynolds equations and their perturbation equations are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between bearings. The Reynolds boundary condition is used in the numerical analysis to simulate the cavitation phenomena. The dynamic coefficients of the proposed method are compared with those of the numerical differentiation of the loads with respect to finite displacements and velocities of bearing center. It shows that the proposed method is more accurate and efficient than the differentiation method.

  • PDF

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권3호
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

자동미분을 이용한 뼈대구조의 다단계 최적설계 (Multi-Level Optimization of Framed Structures Using Automatic Differentiation)

  • 조효남;정지승;민대홍;이광민
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.569-579
    • /
    • 2000
  • 본 논문에서는 지진하중이 작용하는 뼈대구조에 대해 자동미분(Automatic Differentiation)을 이용한 개선된 다단계 최적설계 알고리즘을 제안하고자 한다. 제안된 알고리즘의 효율성을 위해 전체구조계와 구조요소계 최적설계를 각각 분리하는 분해기법을 적용한 다단계 최적설계기법과 제약조건소거기법을 본 알고리즘에서 조합하여 사용하였다. 또한 수치계산을 효율적으로 수행하기 위해 중간매개변수를 사용하여 휨모멘트나 진동수와 같은 근사구조응답을 이용한 효율적인 재해석기법을 제시하였다. 복잡한 음함수 형태인 동적구조응답에 대한 민감도분석을 정확하고 효율적으로 계산하기 위해 자동미분기법을 사용하였다. 수치예제를 근거로 다단계알고리즘의 효율성과 신뢰성을 기존의 단순다단계알고리즘과 비교하여 제시하였다.

  • PDF

비선형 현가요소를 가진 철도차량의 승차감 민감도 해석 (Ride Sensitivity Analysis of a Train With Non-linear Suspension Elements)

  • 전형호;탁태오
    • 한국철도학회논문집
    • /
    • 제5권1호
    • /
    • pp.40-47
    • /
    • 2002
  • In this study, and analytical method for ride sensitivity analysis of a train with non-linear suspension elements are proposed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train are parameterized using polynomial interpolation. Vertical dynamic model of a three-body train running on straight rail with the predetermined roughness expressed in terms of spectral density function is set up and its equations of motion for ride analysis are derived. Using the direct differentiation method, sensitivity equations of the vertical dynamic model with respect to design parameters associated with non-linearity of suspensions are obtained. Based on the sensitivity analysis, improvement of ride is achieved by varying appropriate suspension parameters.

A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method

  • Kim, Chang-Joo;Park, Joon-Goo;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1188-1200
    • /
    • 2015
  • A unified numerical method for computing the quadrature weights, integration matrix, and differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation using piecewise continuous polynomials is converted into a global spline interpolation formula, with which the quadrature formulas can be derived from integration and differentiation of the transformed function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and tension spline interpolations are represented in exactly the same form as global spline interpolation. The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of nodes. A series of validations using three test functions is conducted to show the flexibility in selecting computational nodes with the present method.