• Title/Summary/Keyword: numerical aperture

Search Result 192, Processing Time 0.023 seconds

Inscribed Transceiver Optical System Design for Laser Radar with Zoom-type Expander (줌렌즈 광속확대기를 적용한 레이저 레이더용 송수광 내접형 광학계 설계)

  • Koh, Hae Seog;Ok, Chang Min;Hong, Jin Sug;Lee, Chang Jae;Park, Chan Geun;Kim, Hyun Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • In this paper, an optical system was designed for 3D imaging laser radar with optical scanner. In order to make it easy to scan, the system was designed to inscribe the transmitting objective lens in the receiving lens. In transmitting optics, the beam expander was designed to have a zoom mechanism so that the transmitted beam size would be 4.8 m or 6.8 m at 1 km distance, when the laser source's numerical aperture value is between 0.13 and 0.22. The beam diameter at the target 1 km away was confirmed by design program. The receiving optics for the returning beam from the target was designed for the $16{\times}16$ array detector with $100{\mu}m$ pixel width. The spot diameter in every pixel was designed and verified to be less than $55{\mu}m$. The receiving optics' obscuration ratio by transmitting optics was 11%.

A Study on Applicability of Equivalent Continuum Flow Model in DFN Media (DFN 매질에 대한 등가연속체 유동모델의 적용 가능성 평가에 관한 연구)

  • Lee, Dahye;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.303-311
    • /
    • 2017
  • The correlation analysis between the results obtained from DFN flow model and equivalent continuum flow model were conducted on total of 72 DFN blocks having various fracture geometry and domain size. A strong linear relation seems to exist between the two approaches under condition that normalized relative error for continuum behavior (ER) is less than 0.2, and the results from both methods are found to almost identical. To explore the field applicability of equivalent continuum flow model in DFN media, a total of 48 numerical schemes related to inflow of underground circular openings were implemented under various DFN configurations. The equivalent continuum flow model in DFN media with a constant hydraulic aperture was evaluated as valid. However, as the anisotropy increases due to variation of the hydraulic aperture, the results are likely to be overestimated compare to the DFN flow model.

Low Loss Fusion Splicing of Photonic Crystal Fiber and Single-Mode Fiber (광자결정 광섬유와 단일모드 광섬유 저손실 융착접속)

  • Ahn, Jin-Soo;Park, Kwang-No;Kim, Gil-Hwan;Lee, Sang-Bae;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.15-21
    • /
    • 2009
  • We proposed a fusion splicing method for low splicing loss between a single-mode fiber(SMF) and two different photonic crystal fibers(PCFs) such as a photonic bandgap fiber(PBGF) and highly nonlinear photonic crystal fiber(NL-PCF). The splicing loss between the SMF and PBGF is affected by air-hole collapse. Therefore, we optimized fusion splicer and reduced a splicing loss below 1.22 dB. We also inserted a Intra High Numerical Aperture(UHNA) fiber between the SMF and NL-PCF to achieve a splicing loss of below 2.59 dB.

Efficient calculation method of derivative of traveltime using SWEET algorithm for refraction tomography

  • Choi, Yun-Seok;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.402-409
    • /
    • 2003
  • Inversion of traveltime requires an efficient algorithm for computing the traveltime as well as its $Frech\hat{e}t$ derivative. We compute the traveltime of the head waves using the damped wave solution in the Laplace domain and then present a new algorithm for calculating the $Frech\hat{e}t$ derivative of the head wave traveltimes by exploiting the numerical structure of the finite element method, the modem sparse matrix technology, and SWEET algorithm developed recently. Then, we use a properly regularized steepest descent method to invert the traveltime of the Marmousi-2 model. Through our numerical tests, we will demonstrate that the refraction tomography with large aperture data can be used to construct the initial velocity model for the prestack depth migration.

  • PDF

Finite Element Analysis for Electron Optical System of a Field Emission SEM (전계방출 주사전자 현미경의 전자광학계 유한요소해석)

  • Park, Keun;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.

Performance Analysis of a savonius type direct drive turbine for wave energy conversion

  • Zullah, Mohammed Asid;Prasad, Deepak Divashkar;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.2-237.2
    • /
    • 2010
  • Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. The techniques of Computational Fluid Dynamics (CFD) are applied to simulate a wave energy conversion device in free surface such as waves. This research uses the commercially available ANSYS CFX computational fluid dynamics flow solver to model a complete oscillating water column system with savonius turbine incorporated at the rear bottom of the OWC chamber in a three dimensional numerical wave tank. The purpose of the present study is to investigate the effect of an average wave condition on the performance and internal flow of a newly developed direct drive turbine (DDT) model for wave energy conversion numerically. The effects of blade angle and front lip shape on the hydrodynamic efficiency are investigated. The results indicated that the developed models are suitable to analyze the water flow characteristics both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for the all cases. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.

  • PDF

Numerical Analysis of Flow Interference at Discontinuity Junction of fracture Network (단열교차점에서 유체간섭에 관한 수치적 고찰)

  • 박영진;이강근;이승구
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.111-115
    • /
    • 1997
  • Discrete fracture model has become one of the alternatives for the classical continuum model to simulate the irregular aspects of the fluid flow and the solute transport in fractured rocks. It is based on the assumptions that the discharge in a single fracture is proportional to the cube of the aperture and the fractured rock can be represented by the statistical assemblage of such single fractures. This study is intended to evaluate the effect of the fracture junction on the cubic law. Numerical solution of flow in junction system was obtained by using the Boundary-Fitted Coordinate System (BFCS) method. Results with different intersection angles in crossing fractures show that the geometry of the junction affects the discharge pattern under the same simulation conditions. Therefore, strict numerical and experimental examinations on this subject are required.

  • PDF

A Numerical Study on Characteristics of Solute Transport in a Rough Single Fracture with Spatial Correlation Length and Effect of Effective Normal Stress (공간적 상관길이와 유효수직응력의 효과에 따른 거친 단일 균열내의 용질이동특성에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • This study is to analyze numerically the spatial behaviors of the solute transport in a spatially correlated variable-aperture fracture under the effective normal stress conditions. Numerical results show that the solute transport in a fracture is strongly affected by the spatial correlation length of apertures and applied effective normal stress. According to increasing spatial correlation length, the mean residence time of solute is decreased and the tortuosity and Peclet number (is a dimensionless number relating the rate of advection of a flow to its rate of diffusion) is also decreased. These results mean that the geometry of the aperture distribution is favorable to the solute transport as the spatial correlation length is increased. However, according to the applied effective normal stress is increased, the mean residence time and tortuosity have a tendency to increase but the Peclet number is decreased. The main reason that the Peclet number is decreased, is that the solute is displaced by one or two channels with relatively higher local flow rate due to the increment of contact areas by increasing effective normal stress. Moreover, based on numerical results of the solute transport in this study, the exponential-type correlation formulae between the mean residence time and the effective normal stress are proposed.

  • PDF

Validation of Numerical Wind Simulation by Offshore Wind Extraction from Satellite Images (위성영상 해상풍 축출에 의한 수치바람모의 검증)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Lee, Hwa-Woon;Kim, Dong-Hyuk;Kim, Deok-Jin
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.847-855
    • /
    • 2009
  • As a part of effort to establish an offshore wind resource assessment system of the Korean Peninsula, a numeric wind simulation using mesoscale climate model MM5 and a spatial distribution of offshore wind extracted from SAR remote-sensing satellite image is compared and analyzed. According to the analyzed results, the numeric wind simulation is found to have wind speed over predication tendency at the coastal sea area. Therefore, it is determined that a high-resolution wind simulation is required for complicated coastal landforms. The two methods are verified as useful ways to identify the spatial distribution of offshore wind by mutual complementation and if the meteor-statistical comparative analysis is performed in the future using adequate number of satellite images, it is expected to derive a general methodology enabling systematic validation and correction of the numeric wind simulation.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF