A Numerical Study on Characteristics of Solute Transport in a Rough Single Fracture with Spatial Correlation Length and Effect of Effective Normal Stress

공간적 상관길이와 유효수직응력의 효과에 따른 거친 단일 균열내의 용질이동특성에 관한 수치적 연구

  • 정우창 (경남대학교 토목공학과)
  • Received : 2008.10.27
  • Accepted : 2008.12.02
  • Published : 2009.01.02

Abstract

This study is to analyze numerically the spatial behaviors of the solute transport in a spatially correlated variable-aperture fracture under the effective normal stress conditions. Numerical results show that the solute transport in a fracture is strongly affected by the spatial correlation length of apertures and applied effective normal stress. According to increasing spatial correlation length, the mean residence time of solute is decreased and the tortuosity and Peclet number (is a dimensionless number relating the rate of advection of a flow to its rate of diffusion) is also decreased. These results mean that the geometry of the aperture distribution is favorable to the solute transport as the spatial correlation length is increased. However, according to the applied effective normal stress is increased, the mean residence time and tortuosity have a tendency to increase but the Peclet number is decreased. The main reason that the Peclet number is decreased, is that the solute is displaced by one or two channels with relatively higher local flow rate due to the increment of contact areas by increasing effective normal stress. Moreover, based on numerical results of the solute transport in this study, the exponential-type correlation formulae between the mean residence time and the effective normal stress are proposed.

본 연구에서는 유효수직응력의 영향을 받고 있으며, 공간적으로 상관된 간극분포를 포함하고 있는 단일 균열 내에서의 용질이동에 대한 공간적 거동을 수치적으로 분석하였다. 분석결과 단일 균열에서의 용질이동은 간극분포의 공간적 상관정도와 적용된 유효수직응력에 크게 영향을 받는 것으로 나타났다. 공간적 상관길이가 증가함에 따라 용질입자의 평균이동시간은 감소하였으며, 또한 용질이동에 대한 굴곡도와 Peclet 수(유체흐름에 의한 용질의 이송율과 분자확산율과의 관계를 나타내는 무차원 수)가 감소하는 경향을 나타내었다. 이는 공간적 상관길이가 증가할수록 단일 균열 내의 간극분포가 용질입자의 이동에 유리하다는 것을 의미한다. 그러나 유효수직응력이 증가할수록 용질입자의 평균이동시간과 굴곡도는 증가하는 경향을 나타냈으며, Peclet 수는 감소하는 경향을 나타냈다. 이는 유효수직응력이 증가할수록 접촉면의 증가로 인해 한 두 개의 상대적으로 큰 국부유량을 가지는 유로를 따라 이동하기 때문인 것으로 판단된다. 또한 본 연구에서 용질이동에 대한 모의된 결과에 근거하여 공간적 상관길이에 따른 유효수직응력과 용질의 평균이동시간과의 관계를 나타내는 지수형태의 상관식을 제안하였다.

Keywords

References

  1. 정우창 (2007), 공간적 상관길이와 역학적 효과에 따른 거친 단일 균열내의 유체 흐름에 대한 수치적 연구, 한국지반환경공학회 논문집, 제8권 제4호, pp. 27-39.
  2. 정우창, 허보영, 송재우 (2004), 이방성의 변화하는 간극분포를 가진 단일 균열에서의 유체흐름과 용질이동에 대한 수치적 연구, 대한토목학회 논문집, 제24권, 제5호, pp. 421-429.
  3. Abelin, H., Gidlund, J., and Neretnieks, I. (1982), Migration in a single fracture, Proc. Mater. Res. Soc. Symp., Vol. 11, pp. 529-538.
  4. Brown, S. R. (1987), Fluid flow through rock joints: The effect of surface roughness, Journal of Geophysical Research, Vol. 92, No. B2, pp. 1337-1347. https://doi.org/10.1029/JB092iB02p01337
  5. Brown, S. R. (1989), Simple transport of fluid and electric current through a single fracture, Journal of Geophysical Research, Vol. 94, No. B7, pp. 9429-9438. https://doi.org/10.1029/JB094iB07p09429
  6. Cacas, M. C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P., Gaillard, B. and Margrite, R. (1990), Modelling fracture flow with a discrete fracture network: Calibration and validation 2. The transport model, Water Resources Research, Vol. 26, No. 3, pp. 491-500.
  7. Ewing, P. and Jaynes, D. (1995), Issue in single-fracture transport modeling: scales, algorithms and grid types, Water Resources Research, Vol. 31, No. 2, pp. 303-312. https://doi.org/10.1029/94WR02674
  8. Gale, J. (1987), Hydraulic behavior of rock joints, In Rock Joints, Barton, N. and Stephansson, O. (Eds.), Rotterdam, Balkema, pp. 623-630.
  9. Gentier, S. (1986), Morphologie et comportement hydromecanique d'une fracture naturelle dans un granite sous contrainte normale: Etude experimentale et therique. Ph.D. dissertation, University of Orleans, Orleans, France, pp. 1-350.
  10. Hakami, E. and Larsson, E. (1996), Aperture measurements and flow experiments on a single natural fracture, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 33, pp. 395-404. https://doi.org/10.1016/0148-9062(95)00070-4
  11. Haldeman, W., Chuang, Y., Rasmussen, T. and Evans, D. (1985), Laboratory analysis of fluid flow and solute transport through a fracture embedded in porous tuff, Water Resources Research, Vol. 27, pp. 53-65. https://doi.org/10.1029/90WR01902
  12. Jeong, W. and Song, J. (2008), A Numerical Study on Flow and Transport in a Rough Fracture with Self-Affine Fractal Variable Apertures, Energy Sources, Vol. 30, pp. 606-619. https://doi.org/10.1080/15567030600817290
  13. Matheron, G. (1973), The intrinsic random function and their applications, Advanced Applied Probability, Vol. 5, pp. 439- 468. https://doi.org/10.2307/1425829
  14. Moreno, L., Neretnieks, I., and Eriksen, T. (1985), Analysis of some laboratory tracer runs in natural fissures. Water Resources Research, Vol. 21, No. 7, pp. 951-958. https://doi.org/10.1029/WR021i007p00951
  15. Moreno, L., Tsang, C., Tsang, Y., Hale, F., and Neretnieks, I. (1988), Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations, Water Resources Research, Vol. 24, No. 12, pp. 2033-2048. https://doi.org/10.1029/WR024i012p02033
  16. Neretnieks, I., Eriksen, T., and Tahtien, P. (1982), Tracer movement in a single fissure in granitic rock: Some experimental results and their interpretation, Water Resources Research, Vol. 18, No. 4, pp. 849-858. https://doi.org/10.1029/WR018i004p00849
  17. Pyrak-Nolte, L., Myer, L., Cook, N., and Witherspoon, R. (1987), Hydraulic and mechanical properties of natural fractures in low permeability rock, Proc. of 6th International Congress of Rock Mechanics, Rotterdam, Balkema, pp. 789-798.
  18. Raven, K. and Gale, J. (1985), Water flow in a natural rock fracture as a function of stress and sample size, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, Vol. 22, No. 4, pp. 251-261. https://doi.org/10.1016/0148-9062(85)92952-3
  19. Thompson, M. (1991), Numerical simulation of solute transport in rough fractures, Journal of Geophysical Research, Vol. 96(B3), pp. 4157-4166. https://doi.org/10.1029/90JB02385
  20. Tsang, Y. and Tsang, C. (1987), Channel model of flow through fractured media, Water Resources Research, Vol. 23, No. 3, pp. 467-479. https://doi.org/10.1029/WR023i003p00467
  21. Tsang, Y., Tsang, C., Neretnieks, I. and Moreno, L. (1988), Flow and tracer transport in fractured media: A variable aperture channel model and its properties. Water Resources Research, Vol. 24, No. 12, pp. 2049-2060. https://doi.org/10.1029/WR024i012p02049
  22. Witherspoon, P., Wang, J., Iwai, K. and Gale, J. (1980), Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, pp. 1016-024. https://doi.org/10.1029/WR016i006p01016