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Abstract: Inversion of traveltime requires an efficient algorithm for computing the traveltime as well as its Frechét
derivative. We compute the traveltime of the head waves using the damped wave solution in the Laplace domain
and then present a new algorithm for calculating the Frechét derivative of the head wave traveltimes by exploiting
the numerical structure of the finite element method, the modern sparse matrix technology, and SWEET algorithm
developed recently. Then, we use a properly regularized steepest descent method to mvert the traveltime of the
Marmousi-2 model. Through our numerical tests, we will demonstrate that the refraction tomography with large
aperture data can be used to construct the initial velocity model for the prestack depth migration.

1. Introduction

The refraction tomography is being widely used to obtain the velocity structure of the shallow subsurface for the
static correction of the reflection data and the engineering site survey. One of the advantages of refraction tomogra-
phy over reflection tomography is that it can easily pick the first arrival event without human interpretation. How-
ever, the refraction tomography has not been widely used for constructing the initial velocity model for the prestack
depth migration.

In parameterizing the earth velocity model, tomography can be divided into the block tomography and the cell
tomography according to the way in which parameterization is done. Shin et al (1999) introduced refraction tomo-
graphy by blocky parameterization. They subdivided the velocity model into the blocky layers whose velocity and
coordinates of the layers could be changed simultaneously, thereby allowing reduction in the number of unknowns.
In the cell-based tomography, we can tessellate the velocity model arbitrarily by small cells or group consisting of
several small cells.

In the refraction tomography, we update the velocity model by minimizing the difference of picked traveltime
and modeled traveltime of initial model. Refraction traveltime is the first traveltime for a wave emanating from a
source to pass through the medium and to arrive at the receiver. Hence, we can express, both explicitly and implic-
itly, the traveltime as a function of the subsurface velocities, and then calculate the Frechét derivative analytically.

In this paper, we develop a new algorithm to calculate Frechét derivative of the traveltime by exploiting SWEET
(Suppressed Wave Equation Estimation of Traveltime) algorithm (Shin et al., 2002). We then applied it to the refrac-
tion tomography. We will begin by reviewing the SWEET algorithm suggested by Shin et al (2002). Next, we will
develop a new algorithm to compute the Frechét derivative of the traveltime with respect to the subsurface velocity by
a numerical structure of the finite element method, 2 modern sparse matrix technology, and the SWEET algorithm.

By inverting the Marmousi-2 model (Martin et al., 2002) via our algorithm, we will demonstrate that the refrac-
tion tomography combined with the long offset survey can provide a smooth velocity model for the prestack depth
migration.

2. Theory
Calculation of traveltime and its Frechét derivative

Scalar wave equation in the time domain is given as

S o oS )

where x, z are the coordinates in the horizontal and vertical directions, respectively, v is a velocity function of x
and z, ¢ is time, f is a source function, and u is a pressure wavefield or a displacement. In general, the time
domain wavefield (u ) can be approximated as a series of spikes. (Shin et al., 2002)
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where A. is the amplitude at # th-digitized time (. ). By multiplying equation (2) by a strong damping factor e,
we can approximate the damped wavefield as

u(®) =u(t)e™ = A4e5(t-1,). 3

Integrating equation (3) from 0 to infinity with respect to ¢ results in approximating Laplace transform of equa-
tion (2).

i= fu(t)e"“dt @)

where s is the Laplace frequency. Therefore, the Laplace-transformed wavefield at a relatively high and optimum
Laplace frequency s (Shin et al., 2002) can be given as

0= A (x,2)e”"" = 4(x,z)e”"". ©)

By taking the derivative of equation (5) with respect to s and dividing it by #, we can obtain the traveltime of
the first arrival event (Shin el al., 2002),

1] . Ou s _
Ql—l = '—tlAle_Stl =—-hu, —u =—tiAe "= —hu. (6)
0s Os

Following Shin et al (2001)’s notation, we parameterize the subsurface by an N = N:x N: elements where Nxis
the number of elements in x direction and N: is the number of elements in z direction. At each element, we iden-
tify a velocity v, . In this manner, we define our model parameter vector P to be

p=[v1,v2, ...... ,VN]- (7

Then, the first arrival traveltime can be expressed as a function of a subsurface parameter, thereby allowing us to
take derivative of equation of the traveltime with respect to p, via a simple algebra. Thus the derivative of the

traveltime ( 8¢,/ 8p, ) with respect to p; can be given as

1 ‘op, osép,
on _\ 9 O0p) ., N

. f=1- N. (8)
Op, i

From equation (8), we note that the derivative of the Laplace-transformed wavefield with respect to the subsur-
face parameter ( p,) and the second order derivative of the Laplace-transformed wavefield appear in equation (8).

Next we explain how to compute these derivatives via the finite element modeling technique. The finite element or
finite difference discretized wave equation in the Laplace domain can be given (Shin et al., 2002) as

Si=f 9)
where, S=Ms’+K (10)
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i= f u(t)e*dt (11)
f= f f(t)e™ dt (12)

where M is the global mass matrix, K is the global stiffness matrix, u is the wavefield vector, f is the source
vector, and s is the Laplace frequency.
If we take the derivative of equation (9) with respect to Laplace frequency s, we will obtain the derivative of the

wavefield with respect to s through a simple matrix algebra (Note that f is constant; we assume that the source
function in time is a delta function)

(Ms2+K);ﬂ=—2sMﬁ. (13)
A

Of course, we can take the derivative of equation (9) with respect to the velocity parameter p,, as Shin (1988)
did in his waveform inversion, we can express it as

(MsZ+K)§—u=—szaﬂﬁ i=1eee ,N. (14)

p; op;

For the second derivative of the wavefield, similarly, we take the derivative of equation (14) with respect to s
once more and express it as

2~ ~ ~
O _ B Mg MO

Ms’* +K)
OsOp; op; op; Op; Os

i=1,eeee ,N. (15)

In the frequency or the Laplace domain modeling, we, in principle, need to invert the huge sparse matrix arising
from the finite element or the finite difference method. However, this is practically intractable and almost impossi-
ble for a large scale 2-D or 3-D problems. Thus, instead of inverting the huge sparse impedance matrix, we factor a
real impedance matrix into the upper and the lower triangle matrix and then obtain the wavefield by forward and

~ ~ 2~
backward substitution (Kreyszig, 1993; Pratt, 1999). In computing — ou 6u and —a—g-, once we factor the real
Os 6p, Osop,
impedance matrix, the computation of these derivatives only require multiple sparse right hand side vectors.
Inversion theory (The steepest descent method)

In travel time tomography, we usually take the residual error between the data and the modeled data, and express
it as

5d, =u, —d,, ’ (16)

where d is the modeled data, u, ; is the measured data and 7 is the number of receiver on the surface and Jis

the number of shot on the surface As it is common in geophysical inverse problems, we try to minimize the
l> —norm of the residual error and express it as

E(p)= —i—&d'éd . an
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In a classical steepest descent method, we update the velocity model in a steepest descent direction that is per-
pendicular to the objective function (Lines and Treitel, 1984) by a general iterative rule and modify a classical
steepest descent method as (Shin et al., 2001)

p(k+1) _ p(k) _ [diag [J,Jﬂ-l VpE(k) (18)

where & is the number of iteration, and s denotes the transpose, J is the (n, x 1, )xn Jacobian matrix, diag

means the diagonal elements of the approximate Hessian matrix, #, is the number of receivers, 1 is the number
of shots, and 7 is the number of parameters. By explicitly computing the Frechét derivative, we can not only com-

pute V pE j(k) by multiplying the residual by the Jacobian matrix but also compute the approximate Hessian matrix.
Thus we can express the steepest descent direction as

VpEj(k) :Z_E=Jt5d (19)
Y

where P is the model parameter vector.

In this paper, we used only the diagonal matrix of the approximate Hessian and added a damping factor to regu-
larize the step length.

-1
p, %" =p,® | diag[JI |+ 1| V,EY 20)
where I is an identity matrix, and A is a Lagrange multiplier.

3. Synthetic data examples
Comparison of analytic Frechét derivative and numerical Frechét derivative

In classical optimization technique requiring Frechét derivative, the verification of the exact Frechét derivative is
a crucial element to be checked. Hence we compare analytic Frechét derivative with numerical Frechét derivative
using finite difference formula (Lines and Treitel, 1984). Figure 1 shows the velocity model chosen for comparing
our Frechét derivatives. This model has five horizontal layers. The horizontal distance is S5km and the vertical dis-
tance is 0.5km. We placed the source at 500m on the surface, and receivers are located on the surface at an interval
of 10m. For comparison of Frechét derivative, we perturbed the block denoted by rectangle symbol, as shown in
Figure 1.

Figure 2 shows the Frechét derivative of the traveltime. From Figure 2, we note that both the analytic Frechét de-
rivative and the numerical Frechét derivative are in good agreement with each other.
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Fig. 1. Five layered model for the comparison of Frechét derivative by the analytic method with the numerical difference
method.
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Fig. 2. The analytical Frechét derivative (d? / dv ) of the traveltime where the rectangular block in Figure 1 is perturbed.

Marmousi-2 model (traveltime inversion)

For the traveltime inversion of a large-scale model, we choose a Marmousi-2 model (Martin et al., 2002) that is
larger than the original Marmousi model. The main reason for taking the Marmousi-2 model is to increase the illu-
mination zone so that the refracted waves could penetrate deep into the model. Figure 3 shows the Marmousi-2
model whose horizontal and vertical distance are 17km and 3km, respectively. The grid size is 40m. One hundred
and five shots are located on the surface at 160m interval while four hundred and twenty six receivers for each shot
are placed on the surface at 40m interval. We parameterized the velocity model in two different ways. The first one
is parameterizing a velocity model of each cell, while the other is choosing the block which consists of 5x5 cells as
unknowns. Figure 4 (a) shows the initial velocity model whose velocity linearly increases with depth, whereas Fig-
ure 4 (b) shows the inverted velocity model at the 20™ iteration through the cell parameterization. As is common in
refraction tomography, we could not recover the true velocity model exactly but was able to obtain the velocity
model that vaguely converge the true model. Figure 4 (c) shows the inverted velocity model at the 15™ iteration
through the block parameterization, which is more vaguely resolved than that of the cell parameterization. Besides
that the whole structure appears to be similar to the inverted model of the cell parameterization. Of course, the
block parameterization is capable of reducing computation time to 96% reduction of that of the cell parameteriza-
tion.

Figure 5 shows the history of the /2 —rorm of residual error as a function of iteration. From this figure, we note
that /2 — norm of residual error reach 1~2% of the initial value.

Having successfully inverted the Marmousi-2 model, we proceeded to the Kirchhoff prestack depth migration
using the inverted velocity model as an initial model for the Kirchhoff prestack depth migration. Figure 6 (a) shows
the depth image based on the initial model, while Figure 6 (b) shows the depth image obtained from the inverted
velocity model by the cell parameterization. Lastly, Figure 6 (c) shows the depth image derived from the inverted
velocity model by the block parameterization.
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Fig. 3. Marmousi-2 model. The grid interval is 40m.
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Fig. 4. The initial model and the inverted model for the inversion of traveltimes of Marmousi-2 model. (a) The initial model
whose velocity linearly increases with depth, (b) The inverted model at 20" iteration by the cell parameterization, (c) The in-
verted model at 15™ iteration by block parameterization.
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Fig. 5. The RMS error history of the traveltime inversion of the Marmousi-2 model by (a) the cell parameterization and (b)
the block parameterization.
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Fig. 6. Kirchhoff prestack depth migration image. (a) The prestack depth migration image where the initial velocity model is
used for the migration, (b) the prestack depth migration image of the finally inverted velocity model via the cell parameteriza-
tion, (c) the prestack depth migration image of the last inverted velocity model via the block parameterization.

4, Conclusions

In this paper, we developed a new algorithm to calculate the Frechét derivative of the first arrival traveltime di-
rectly by using SWEET algorithm (Shin et al., 2002) and the finite element method.

In terms of computation costs, the block parameterization have been found to have an advantage over the cell
parameterization without any deterioration to the quality of the initial velocity model for the prestack depth migra-
tion. Our numerical tests demonstrate that refraction tomography combined with a long offset survey can provide a
smooth velocity model for the prestack depth migration.

We feel that the refraction tomography combined with the reflection tomography will be able to provide a
smooth velocity model for the prestack depth migration. As to the calculation of the Frechét derivative of the
traveltime, we can extend our algorithm to the computation of Frechét derivative of the amplitude of the first arri-
val event without any difficulty, thereby allowing us to incorporate the amplitude term to the refraction tomography.

We plan to conduct future study on the inversion of minimizing the misfit of both the traveltime and the amplitude
of the first arrival event.
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