• Title/Summary/Keyword: numerical Calculation

Search Result 2,377, Processing Time 0.038 seconds

A New Kinematic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 새로운 기구학 해석방법)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1206-1212
    • /
    • 2001
  • The kinematic analysis of Stewart platform manipulator(SPM) is carried out in order to reduce the calculation time for its forward kinematic solution when the iterative numerical method is employed. The kinematic equations for three substructures of the 6-3 SPM are newly derived by introducing Denavit-Hartenberg link parameters and using kinematic constraints associated with the SPM and substructure kinematics. It is shown that the forward kinematics can be easily solved from three nonlinear equations with three unknown variables only, leading to a great reduction in calculation time.

Numerical Analysis of Flows on H-S and B-B Flow Surfaces in Axial-Flow Tubomachine (軸流터어보機械 의 H-S面 과 B-B面상 의 流動 의 數値解析)

  • 조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.153-160
    • /
    • 1983
  • The flows in an axial flow turbomachine are calculated numerically in the two sets of flow surfaces of H-S and B-B surfaces assuming that the flow is axisymmetric. The calculation is performed by regarding the governing equations as the quasi-Poisson's equations and using the finite element method for the flow regions divided into triangular elements. The results of numerical calculation agree comparatively well with the experimental results and it has been found that the distribution of an axial velocity component at the rotor exit is not necessarily uniform under the influences of the inlet guide vanes and the front shape of the hub even if the rotor is designed by the free-vortex theory. Also it has been found that the existence of the optimum value of the blade number can be estimated from the results of calculation of deviation angles at rotor exit if we consider the viscous flow-loss, and that the flows of B-B surfaces are affected very sensitively by the degree of satisfaction of Kutta condition.

A Study on the Forging of Gears with lnternal Serrations (내부세레이션홈이 존재하는 외치차 단조에 관한 연구)

  • 최종용;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.633-637
    • /
    • 1995
  • Numerical calculation tool for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear, sequare spline, internal serrations. A complex calcuation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper, the workpiece with both external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool form combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with other and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

Numerical analysis of local exhaust effectiveness using reverse-flow calculation method (역유동계산법을 이용한 국소배기효율의 수치해석)

  • 한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.658-665
    • /
    • 1998
  • This paper investigates local exhaust effectiveness in a room with a supply and an exhaust slots on the ceiling. The mean age of air is an indicator of supply effectiveness, while the mean residual life time can be used as an indicator of exhaust effectiveness. The distribution of local mean residual life time in a space is calculated by four different numerical procedures. The reverse-flow calculation method has been proved to show quite accurate results while it can save considerable amount of computation time and efforts, compared to the method by its original definition. It is concluded that the diffusion term in the equation of mean residual life time can be neglected. The spatial and temporal diffusion characteristics of the contaminant are also discussed.

  • PDF

The Numerical Simulation of Dry Deposition Velocity Of O3 using Land-Use Information in the Busan Metropolitan City (지표면 특성을 고려한 부산지역의 건성침적속도 예측)

  • 문난경;이화운
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.925-931
    • /
    • 2002
  • Land-use types should be included in air pollutant diffusion model because a complex mixture of various land-use patterns with computational grid can make errors in calculation of several parameters. However, the air pollutant diffusion model has generally been treated with a uniform component with land-use type in each mesh because of the complexity of the simulation. This study presents a numerical simulation of the horizontal distribution of $O_3$dry deposition velocity during summertime in Busan metropolitan city. The calculation of the meteorological field was conducted using the land cover data. Simulation has been performed by the following two scenarios : (1) one with current land cover data, and (2) the other with only land and sea for the surface characteristics. The results from each scenario reveals considerable differences on the meteorological fields and these differences can cause changes in the calculation values of $O_3$deposition velocity.

Design of automobile body shape by using panel method (파넬법을 이용한 자동차의 외형설계)

  • 이동호;강신영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.54-61
    • /
    • 1984
  • Numerical calculation of the flow field past a passenger car was carried out by using a panel method with a small computer of 5Mbyte memory size. The shape of car body was simplified and reconstructed by 2180 panels on which a constant strength sink (or source) was distributed. The separation of flow from the surface and the wake flow were not considered in the calculation because of the computer memory limitation. All of the results of calculation were presented by using a 3-dimensional computer graphics. In spite of small memory size of computer, generally good agreements were obtained, except the separated region, from the comparison of pressure distribution between numerical analysis and wind tunnel experiment with 1/5 scaled model.

  • PDF

Range of DVR parameters for the Calculation of Vibrational Energy of Anharmonic Oscillators (비조화 진동자 진동에너지 계산에 적합한 DVR 계산 변수 결정)

  • Jeon, Kiyoung;Yang, Mino
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.163-168
    • /
    • 2016
  • We summarize the discrete variable representation method which is a simple numerical method enabling us to calculate the vibrational energies and wave functions of anharmonic oscillators. The ranges of its parameters well-performing for the calculation of fundamental and overtone transition energies are predicted by analyzing the model of Morse oscillator.

Numerical Simulation of Unsteady Cavitating Flow Around 2D Hydrofoil (수중익 주위의 2차원 비정상 공동 현상 해석)

  • Lee, Se-Young;Park, Soo-Hyung;Lee, Chang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.653-662
    • /
    • 2007
  • Due to the difficulty raised from the coupling of cavitation modeling with turbulent flow, numerical simulation for two phase flow remains one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around 2D hydrofoil by combing the cavitation model suggested by Kunz et al. with $k-{\varepsilon}$ turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. Also, the comparison of the calculation results is made with LES results to evaluate the capability of $k-{\varepsilon}$ turbulence model. The calculation results show very good agreement with experimental observations even though this code can not grasp the small scaled bubbles in the calculation wheres LES can hold the real physics. This code will be extended to 3D compressible two phase flow for the study on the fluid dynamics in the inducers and impellers.

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.

The Numerical Simulation of Harbor Calmness by Finite Element Method (유한요소법에 의한 항만 정온도의 수치모의)

  • 김남형;허영택
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.22-26
    • /
    • 2002
  • In this paper, a finite element method is applied to the numerical calculation of the harbor calmness. The mild stop equation as the basic equation is used. The key of this model is that the bottom friction and boundary absorption are imposed. A numerical result is presented and compared with the results obtained from the other numerical analysis. These results are in very well agreement. This method calculating the calmness can be broadly utilized making the new design of harbor and fishing port in the future.