Several neural networks have been successfully used to classify complex patterns such as handwritten numerals or words. This paper describes the discrimination of totally unconstrained handwritten numerals using the proposed chaotic neural network (CNN) to improve the recognition rate. The recognition system in the paper consists of the preprocessing stage to extract features using Kirsch mask and the classification stage to recognize numerals using the CNN. In order to evaluate the performance of the proposed network, we performed the recognition with unconstrained handwritten numeral database of Concordia university, Canada. Experimental results show that the CNN based recognizer performs higher recognition rate than other neural network-based methods reported using same database.
In this paper, to provide the robustness of character recognition, we propose a recognition method using the dilated boundary curve feature which has the invariance characteristics for the shift, scale, and rotation changes of character pattern. And its some characteristics and effectieness are evaluated through the experiments for both the english alphabets and the numeral digits. The feature vector is represented by the fourier descriptor for a boundary curve of the dilated character pattern which is generated by the circular mask dilation method, and is used for a nearest neighbort classifier(NNC) or a nearest neighbor mean classifier(NNMC). These the processing time and the recognition rate, and take also the robustness of recognition for both some internal noise and partial corruption of an image pattern.
Journal of the Institute of Convergence Signal Processing
/
v.3
no.1
/
pp.48-53
/
2002
In this paper, we presented a new approach to the recognition of unconstrained handwritten numerals using an improved RBF(Radial Basis Function) Neural Networks. The RBF Neural Networks used Raised Cosine as a basis function to improve discrimination and reduce processing time. The performance of Raised Cosine RBF Neural Networks classifier was evaluated using totally unconstrained handwritten numeral database of Concordia University, Montreal, Canada, and the experimental results showed the recognition rate of 98.05%.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.42
no.4
s.304
/
pp.43-50
/
2005
This paper proposes a new pattern recognition system combining the new adaptive feature weighting based on the genetic algorithm and the modified KNN(K Nearest-Neighbor) rules. The new feature weighting proposed herein avoids the overfitting and finds the Proper feature weighting value by determining the middle value of weights using GA. New GA operators are introduced to obtain the high performance of the system. Moreover, a class dependent feature weighting strategy is employed. Whilst the classical methods use the same feature space for all classes, the Proposed method uses a different feature space for each class. The KNN rule is modified to estimate the class of test pattern using adaptive feature space. Experiments were performed with the unconstrained handwritten numeral database of Concordia University in Canada to show the performance of the proposed method.
In this paper we emphasize the importance of architectural aspects of designing a handwritten numeral recognition program. and describe two architectural design.First, we describe the modular design of a numeral recognition program, and mention its advantages.In this design, a recognizer is composed of 10 binary subrecognizers each of which is responsible for only one class.Rule-based training and neural-based training are presented.Second, we connect two(or more)recognizers serially which we call pipelining connection.The second recognizer may act as verifier for the patterns recognized by the forst recognizer, or as second chance recognizer for the patterns rejected by the first recognizer.Our experimental results obtained till now show the merits of the proposed architectural designs.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.707-712
/
1998
This paper presents several softcomputing techniques such as neural networks, fuzzy logic and genetic algorithms : Neural networks as brain metaphor provide fundamental structure, fuzzy logic gives a possibility to utilize top-down knowledge from designer, and genetic algorithms as evolution metaphor determine several system parameters with the process of bottom up development. With these techniques, we develop a pattern recognizer which consists of multiple neural networks aggregated by fuzzy integral in which genetic algorithms determine the fuzzy density values. The experimental results with the problem of recognizing totally unconstrained handwritten numeral show that the performance of the proposed method is superior to that of conventional methods.
Proceedings of the Korea Multimedia Society Conference
/
2000.11a
/
pp.117-120
/
2000
최근 전자상거래 시스템을 이용이 많아짐에 따라, 상품의 정보나 거래를 위한 정보가 되는 수사추출에 관한 연구가 필요하다. 수사는 표현 자체의 다양성과 다근 품사와는 구분되는 활용으로 인해 언어 분석에 있어 많은 문제점을 가지고 있지만, 일반문서에서는 발생빈도가 그다지 높지 않아 그에 관한 연구들은 적은 실정이다. 현재가지의 수사 추출에 관한 연구는 수사 어절이 다른 표현들과는 달리 어순이 뚜렷하다는 것을 이용하여 그 어순들의 결합정보의 조합을 이용하여 시도하였다. 본 논문에서는 이러한 수사 어절의 특징을 문법화함으로써 자연언어 질의에 의한 전자상거래 시스템에 관한 연구를 수행하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.661-663
/
2002
필기체 숫자 인식을 위한 새로운 특징 추출방범을 숫자의 기하학적인 구조들을 이용하여 연구 제안하였다. 일반적으로 쓰이고 있는 특징점들의 몇가지 부류를 결정하여 추줄하였고, 분절 화소들을 이용한 특징 추출기는 사소한 부분들을 명확한 특징으로 탐지하여 추줄하게 된다. 신경망은 새로운 접근 가능성을 탐지하는 실험 인식기로 사용하였고, 이러한 방법들을 이용하여, 일반적인 특징점 추줄방법과 본 연구에서 제안하는 특징점 추출방법을 결합하게 되면 필기체 문자의 인식률이 단순히 일반적인 특징만을 활용하여 얻는 인식률 보다 훨씬 향상됨을 보여주었다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.245-248
/
2002
OCR 시스템에서 feature는 인식성능에 상당히 중요한 역할을 한다. gradient feature는 현재까지 개발되어진 여러 가지 feature들 중에서 폭넓게 사용되고 있는 것 중의 하나이다. 본 논문에서는 변형이 심한 인쇄체 숫자를 실험대상으로 하고, Kirsch mask를 이용한 방향성을 가지는 edge를 추출하여 신경망의 입력벡터로 사용할 때 압축의 크기에 따른 인식성능의 차이를 비교하고, 최적의 벡터크기를 제안한다.
Proceedings of the Korea Multimedia Society Conference
/
2003.05b
/
pp.762-765
/
2003
본 논문에서 제안하는 분절된 화소들의 특징추출 방법은 이진화 영상에서 수직/수평 화소들의 분절점을 탐색하여 추출하는 특징 탐색기이다. 숫자의 구조적인 면을 고려하여 사소한 부분들도 명확한 특징으로 탐지하여 추출하였고, 이러한 방법은 일반적으로 사용하여지는 특징추출방법 몇가지를 선택하여 이용하였고, 제안하는 방법과 결합하여 필기체 숫자를 인식하였다. 인식기를 구현하기 위하여 3개층 구조를 갖는 클러스터 MLP 신경망을 사용하였다 실험 결과 단순히 일반적인 특징만을 활용하여 얻는 인식률 보다 훨씬 향상됨을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.