• Title/Summary/Keyword: number of graphene layers

Search Result 44, Processing Time 0.035 seconds

Comparison of Existing Methods to Identify the Number of Graphene Layers

  • Sharbidre, Rakesh Sadanand;Lee, Chang Jun;Hong, Seong-Gu;Ryu, Jae-Kyung;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.704-708
    • /
    • 2016
  • The unique characteristics of graphene make it an optimal material for crucial studies; likewise, its potential applications are numerous. Graphene's characteristics change with the number of total layers, and thus the rapid and accurate estimation of the number of graphene layers is essential. In this work, we review the methods till date used to identify the number of layers but they incorporate certain drawbacks and limitations. To overcome the limitations, a combination of these methods will provide a direct approach to identify the number of layers. Here we correlate the data obtained from Raman spectroscopy, optical microscopy images, and atomic force microscopy to identify the number of graphene layers. Among these methods, correlation of optical microscopy images with Raman spectroscopy data is proposed as a more direct approach to reliably determine the number of graphene layers.

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

Number of Graphene Layers As a Modulator of the Open-circuit Voltage of Graphene-Based Solar Cell

  • Im, Gyu-Uk;Lee, Gyeong-Jae;Im, Jong-Tae;Gang, Tae-Hui;Jeong, Seok-Min;Hong, Byeong-Hui;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.113-113
    • /
    • 2011
  • Impressive optical properties of graphene have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we show the direct dependence of open-circuit voltage (Voc) on numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces.

  • PDF

In-situ formation of co particles encapsulated by graphene layers

  • Minjeong Lee;Gyutae Kim;Gyu Hyun Jeong;Aram Yoon;Zonghoon Lee;Gyeong Hee Ryu
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.7.1-7.6
    • /
    • 2022
  • The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules.

Near-Field Imaging of Graphene

  • Gwon, Hyeok-Sang;Kim, Deok-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.127-127
    • /
    • 2012
  • We carried out the high-resolution dielectric mapping of graphenes on $SiO_2$/Si substrate, using the scattering Apertureless Near-Field Scanning Optical Microscopy (s-ANSOM) in both visible (633 nm) and infrared (3.6 um) wavelengths. In the visible wavelength, the dielectric contrasts are almost proportional to the number of the graphene layers, which indicates that the near-field interaction between the tip and individual graphene layers leads to an image charge oscillation in two-dimension. In the infrared region, on the other hand, we observe unique layer-specific contrasts that do not linearly increase with number of layers. It is attributed to the layer-dependent band- structure of graphenes.

  • PDF

Synthesis of Few-layer Graphene Film on a Ni Substrate by Using Filtered Vacuum Arc Source Method

  • Kim, Chang-Su;Seo, Ji-Hun;Gang, Jae-Uk;Kim, Do-Geun;Kim, Jong-Guk;Lee, Hyeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.157-157
    • /
    • 2011
  • Graphene has generated significant interest in the recent years as a functional material for electronics, sensing, and energy applications due to its unique electrical, optical, and mechanical properties. Much of the considerable interest in graphene stems from results obtained for samples mechanically exfoliated from graphite. Practical applications, however, require reliable and well-controlled methods for fabrication of large area graphene films. Recently high quality graphene layers were fabricated using chemical vapor deposition (CVD) on nickel and copper with methane as the source of the carbon atoms. Here, we report a simple and efficient method to synthesize graphene layers using solid carbon source. Few-layer graphene films are grown using filtered vacuum arc source (FVAS) technique by evaporation of carbon atom on Ni catalytic metal and subsequent annealing of the samples at 800$^{\circ}$C. In our system, carbon atoms diffuse into the Ni metal layer at elevated temperatures followed by their segregation as graphene on the free surface during the cooling down step as the solubility of carbon in the metal decrease. For a given annealing condition and cooling rate, the number of graphene layers is easily controlled by changing the thickness of the initially evaporated amorphous carbon film. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as CVD and chemical methods.

  • PDF

Characterization of Graphene Sheets Formed by the Reaction of Carbon Monoxide with Aluminum Sulfide

  • Yoon, Il-Sun;Kim, Chang-Duk;Min, Bong-Ki;Kim, Young-Ki;Kim, Bong-Soo;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3045-3048
    • /
    • 2009
  • Graphene sheets formed by the reaction of carbon monoxide (CO) with aluminum sulfide ($Al_2S_3$) at reaction temperatures ${\leq}$ 800 $^{\circ}$ were characterized by X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The graphene sheets, formed as CO was reduced to gaseous carbon by the reaction with $Al_2S_3$, in the temperature range 800 - 1100 $^{circ}C$, did not exhibit their characteristic XRD peaks because of the small number of graphene layers and/or low crystallinity of graphene sheets. Raman spectra of graphene sheets showed that the intensity ratio of the D band to the G band decreased and the 2D band was shifted to higher frequencies with increasing reaction temperature, indicating that the number of graphene layers increased with increasing reaction temperature.

Layer Controlled Synthesis of Graphene using Two-Step Growth Process

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.221.2-221.2
    • /
    • 2015
  • Graphene is very interesting 2 dimensional material providing unique properties. Especially, graphene has been investigated as a stretchable and transparent conductor due to its high mobility, high optical transmittance, and outstanding mechanical properties. On the contrary, high sheet resistance of extremely thin monolayer graphene limits its application. Artificially stacked multilayer graphene is used to decrease its sheet resistance and has shown improved results. However, stacked multilayer graphene requires repetitive and unnecessary transfer processes. Recently, growth of multilayer graphene has been investigated using a chemical vapor deposition (CVD) method but the layer controlled synthesis of multilayer graphene has shown challenges. In this paper, we demonstrate controlled growth of multilayer graphene using a two-step process with multi heating zone low pressure CVD. The produced graphene samples are characterized by optical microscope (OM) and scanning electron microscopy (SEM). Raman spectroscopy is used to distinguish a number of layers in the multilayer graphene. Its optical and electrical properties are also analyzed by UV-Vis spectrophotometer and probe station, respectively. Atomic resolution images of graphene layers are observed by high resolution transmission electron microscopy (HRTEM).

  • PDF

Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching

  • Irannejad, M.;Alyalak, W.;Burzhuev, S.;Brzezinski, A.;Yavuz, M.;Cui, B.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.169-172
    • /
    • 2015
  • Although, there are several research studies on the engineering of the graphene layers using different etching techniques, there is not any comprehensive study on the effects of using different etching masks in the reactive ion etching (RIE) method on the quality and uniformity of the etched graphene films. This study investigated the effects of using polystyrene and conventional photolithography resist as a etching mask on the engineering of the number of graphene layers, using RIE. The effects were studied using Raman spectroscopy. This analysis indicated that the photo-resist mask is better than the polystyrene mask because of its lower post processing effects on the graphene surface during the RIE process. A single layer graphene was achieved from a bi-layer graphene after 3 s of the RIE process using oxygen plasma, and the bi-layer graphene was successfully etched after 6 s of the RIE process. The bilayer etching time was significantly smaller than reported values for graphene flakes in previous research.

Combination of ultrasonic assisted liquid phase exfoliation process and oxidation-deoxidation method to prepare large-sized graphene

  • Qi, Lei;Guo, Ruibin;Mo, Zunli;Wu, Qijun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.50-54
    • /
    • 2018
  • Large-size graphene samples are successfully prepared by combining ultrosonic assisted liquid phase exfoliation process with oxidation-deoxidation method. Different from previous works, we used an ultrasound-treated expanded graphite as the raw material and prepared the graphene via a facile oxidation-reduction reaction. Results of X-ray diffraction and Raman spectroscopy confirm the crystal structure of the as-prepared graphene. Scanning electron microscopy images show that this kind of graphene has a large size (with a diameter over $100{\mu}m$), larger than the graphene from graphite powder and flake graphite prepared through single oxidation-deoxidation method. Transmission electron microscopy results also reveal the thin layers of the prepared graphene (number of layers ${\leq}3$). Furthermore, the importance of preprocessing the raw materials is also proven. Therefore, this method is an attractive way for preparing graphene with large size.