DOI QR코드

DOI QR Code

In-situ formation of co particles encapsulated by graphene layers

  • Minjeong Lee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Gyutae Kim (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Gyu Hyun Jeong (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Aram Yoon (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Zonghoon Lee (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Gyeong Hee Ryu (School of Materials Science and Engineering, Gyeongsang National University)
  • Received : 2022.05.18
  • Accepted : 2022.07.05
  • Published : 2022.12.31

Abstract

The process of encapsulating cobalt nanoparticles using a graphene layer is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1099542) and Institute for Basic Science (IBS-R019-D1). This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE). (2021RIS-003).

References

  1. F. Abild-Pedersen, J.K. Norskov, J.R. Rostrup-Nielsen, J. Sehested, S. Helveg, Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional the- ory calculations. Phys. Rev. B 73, 1 (2006). https://doi.org/10.1103/PhysRevB.73.115419
  2. L. Chen, H. Chen, R. Luque, Y. Li, Metal-organic framework encapsulated Pd nanoparticles: Towards advanced heterogeneous catalysts. Chem. Sci. 5, 3708 (2014). https://doi.org/10.1039/C4SC01847H
  3. R. Chinchilla, C. Najera, The sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev. 107, 874 (2007). https://doi.org/10.1021/cr050992x
  4. A. Corma, P. Serna, P. Concepcion, J.J. Calvino, Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130, 8748 (2008). https://doi.org/10.1021/ja800959g
  5. W.M. Czaplik, J.-M. Neudorf, A.J. v Wangelin, On the quantitative recycling of Raney-Nickel catalysts on a lab-scale. Green Chem. 9, 1163 (2007). https://doi.org/10.1039/B708057C
  6. M.R. Friedfeld, M. Shevlin, J.M. Hoyt, S.W. Krska, M.T. Tudge, P.J. Chirik, Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076 (2013). https://doi.org/10.1126/science.1243550
  7. V.R. Galakhov, A.S. Shkvarin, A.S. Semenova, M.A. Uimin, A.A. Mysik, N.N. Shchegoleva, A. Ye, E.Z. Yermakov, Kurmaev., Characterization of carbon-encapsulated nickel and iron nanoparticles by means of X-ray absorption and photoelectron spectroscopy. J. Phys. Chem. C 114, 22413 (2010). https://doi.org/10.1021/jp106612b
  8. Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, C. Oshima, Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 374, 61 (1997). https://doi.org/10.1016/S0039-6028(96)00785-6
  9. D. Ge, L. Hu, J. Wang, X. Li, F. Qi, J. Lu, X. Cao, H. Gu, Reversible hydrogenation-oxidative dehydrogenation of quinolines over a highly active Pt nanowire catalyst under mild conditions. Chem Cat Chem 5, 2183 (2013). https://doi.org/10.1002/cctc.201300136
  10. A. Gruneis, D.V. Vyalikh, Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 77, 93401 (2008). https://doi.org/10.1021/acs.jpcc.5b05428
  11. A.S.K. Hashmi, C.an Lothschutz, R. Dopp, M. Rudolph, T. D. Ramamurthi, F. Rominger., Gold and palladium combined for cross-coupling. Angew. Chem. Int. Ed. 48, 8243 (2009). https://doi.org/10.1021/ja400311h
  12. R.V. Jagadeesh, H. Junge, M.-M. Pohl, J. Radnik, A. Bruckner, M. Beller, Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. J. Am. Chem. Soc. 135, 10776 (2013b). https://doi.org/10.1021/ja403615c
  13. R.V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Porl, J. Radnik, J.R. Rabeah, H. Huan, V. Schunemann, A. Bruckner, M. Beller, Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1073 (2013a). https://doi.org/10.1126/science.1242005
  14. Y. Le, X. Xu, P. Zhang, Y. Gong, H. Li, Y. Wang, Highly selective Pd@mpg-C3N4catalyst for phenolhydrogenation in aqueous phase. RSC Adv. 3, 10973 (2013). https://doi.org/10.1039/C3RA41397G
  15. R. Liu, S.M. Mahurin, C. Li, R.R. Unocic, J.C. Idrobo, H. Gao, S.J. Pennycook, S. Dai, Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. Engl. 50, 6799 (2011). https://doi.org/10.1002/anie.201102070
  16. Y.L. Liu, X.Y. Xu, P.C. Sun, T.H. Chen, N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. Int. J. Hydrog. Energy 40, 4531 (2015). https://doi.org/10.1039/C6RA27826D
  17. A. Mefre, B. Mehdaoui, V. Connord, J. Carrey, P.F. Fazzini, S. Lachaize, M. Respaud, B. Chaudret, Complex nano-objects displaying both magnetic and catalytic properties: A proof of concept for magnetically induced heterogeneous catalysis. Nano Lett. 15, 3241 (2015). https://doi.org/10.1021/acs.nanolett.5b00446
  18. A. Nagashima, N. Tejima, C. Oshima, Electronic states of the pristine and alkali-metal-intercalated monolayer graphite/Ni(111) systems. Phys. Rev. B 50, 17487 (1994). https://doi.org/10.1103/PhysRevB.50.17487
  19. S.C. Petitto, M.A. Langell, Surface composition and structure of Co3O4(110) and the efect of impurity segregation. J. Vac. Sci. Technol. A 22, 1690 (2004). https://doi.org/10.1116/1.1763899
  20. R. Rahi, M. Fang, A. Ahmed, R.A. Sanchez-Delgado, Hydrogenation of quinolines, alkenes, and biodiesel by palladium nanoparticles supported on magnesium oxide. Dalton Trans. 41, 14490 (2012). https://doi.org/10.1039/C2DT31533E
  21. D. Ren, L. He, R.-S. Ding, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 134, 17592 (2012). https://doi.org/10.1021/ja3066978
  22. R. Rosei, S. Modesti, F. Sette, C. Quaresima, A. Savoia, P. Perfetti, Electronic structure of carbidic and graphitic carbon on Ni(111). Phys. Rev. B 29, 3416 (1984). https://doi.org/10.1103/PhysRevB.29.3416
  23. G.M. Sammis, H. Danjo, E.N. Jacobsen, Cooperative dual catalysis: Application to the highly enantioselective conjugate cyanation of unsaturated imides. J. Am. Chem. Soc. 126, 9928 (2004). https://doi.org/10.1021/ja046653n
  24. H. Tian, X. Li, L. Zeng, J. Gong, Recent advances on the design of group VIII base-metal catalysts with encapsulated structures. ACS Catal. 5, 4959 (2015). https://doi.org/10.1021/acscatal.5b01221
  25. M. Toyofuku, S.-i. Fujiwara, T. Shin-ike, H. Kuniyasu, N. Kambe. Platinum-catalyzed intramolecular vinylchalcogenation of alkynes with β-phenylchalcogeno conjugated amides. J. Am. Chem. Soc. 130, 10504 (2008). https://doi.org/10.1021/ja804121j
  26. S.-G. Wang, X.Y. Liao, D.B. Cao, Y.W. Li, J. Wang, H. Jiao, Formation of carbon species on Ni(111): Structure and stability. J. Phys. Chem. C 111, 10894 (2007). https://doi.org/10.1021/jp070608v
  27. Y. Wang, Y. Shi, Z. Zhang, C. Carlos, C. Zhang, K. Bhawnani, J. Li, J. Wang, P.M. Voyles, I. Szlufarska, X. Wang, Bioinspired synthesis of quasi-two-dimensional monocrystalline oxides. Chem. Mater. 31(21), 9040 (2019). https://doi.org/10.1021/acs.chemmater.9b03307
  28. Z. Wei, Y. Chen, J. Wang, D. Su, M. Tang, S. Mao, Y. Wang, Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 6, 5816 (2016). https://doi.org/10.1021/acscatal.6b01240
  29. Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li, Y. Wang, In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 5, 4783 (2015). https://doi.org/10.1021/acscatal.5b00737
  30. X. Wu, H. niu, S. Fu, J. Song, C. Mao, S. Zhang, D. Zhang, C. Chen., Core-shell CeO2@C nanospheres as enhanced anode materials for lithium ion batteries. J. Mater. Chem. A 2, 6790 (2014). https://doi.org/10.1039/C3TA15420C
  31. M. Yan, T. Jin, Q. Chen, H.E. Ho, T. Fujita, L.-Y. Chen, M. Bao, M.-W. Chen, N. Asao, Y. Yamamoto, Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines. Org. Lett. 15, 1484 (2013). https://doi.org/10.1021/ol400229z
  32. S. Yang, L. Peng, E. Oveisi, S. Bulut, D.T. Sun, M. Asgari, O. Trukhina, W.L. Queen, MOF-derived cobalt phosphide carbon nanocubes for selective hydrogenation of nitroarenes to anilines. Chem. Eur. J. 24, 4234 (2018). https://doi.org/10.1002/chem.201705400
  33. Y. Yao, Q. Fu, Y.Y. Zhang, X. Weng, H. Li, M. Chen, L. Jin, A. Dong, R. Mu, P. Jiang, L. Liu, H. Bluhm, Z. Liu, S.B. Zhang, X. Bao, Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. U. S. A. 111, 17023 (2014). https://doi.org/10.1073/pnas.1416368111
  34. U.L. Zhang, L. Wang, H.-C. Zhang, Y. Liu, H.-Y. Wang, Z.-H. Kang, S.-T. Lee, Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Adv. 3, 3733 (2013). https://doi.org/10.1039/C3RA23410J