Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.4.169

Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching  

Irannejad, M. (Waterloo Institute for Nanotechnology and Mechanical and Mechatronics Engineering, University of Waterloo)
Alyalak, W. (Waterloo Institute for Nanotechnology and Mechanical and Mechatronics Engineering, University of Waterloo)
Burzhuev, S. (Waterloo Institute for Nanotechnology and Mechanical and Mechatronics Engineering, University of Waterloo)
Brzezinski, A. (Waterloo Institute for Nanotechnology and Mechanical and Mechatronics Engineering, University of Waterloo)
Yavuz, M. (Waterloo Institute for Nanotechnology and Mechanical and Mechatronics Engineering, University of Waterloo)
Cui, B. (Waterloo Institute for Nanotechnology, University of Waterloo)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.4, 2015 , pp. 169-172 More about this Journal
Abstract
Although, there are several research studies on the engineering of the graphene layers using different etching techniques, there is not any comprehensive study on the effects of using different etching masks in the reactive ion etching (RIE) method on the quality and uniformity of the etched graphene films. This study investigated the effects of using polystyrene and conventional photolithography resist as a etching mask on the engineering of the number of graphene layers, using RIE. The effects were studied using Raman spectroscopy. This analysis indicated that the photo-resist mask is better than the polystyrene mask because of its lower post processing effects on the graphene surface during the RIE process. A single layer graphene was achieved from a bi-layer graphene after 3 s of the RIE process using oxygen plasma, and the bi-layer graphene was successfully etched after 6 s of the RIE process. The bilayer etching time was significantly smaller than reported values for graphene flakes in previous research.
Keywords
Graphene; Reactive ion etching; Raman spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. L. Neumann, E. Tóvári, S. Csonka, K. Kamarás, Z. E. Horváth, and L. P. Biró, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 282, 130 (2012). [DOI: http://dx.doi.org/10.1016/j.nimb.2011.08.044]   DOI
2 J. R. Rani, J. Lim, J. Oh, J. W. Kim, H. S. Shin, J. H. Kim, S. Lee, and S. C. Jun, The Journal of Physical Chemistry C, 116, 19010 (2012). [DOI: http://dx.doi.org/10.1021/jp3050302]   DOI
3 M. Ferreira, E. H., M.V.O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, and A. Jorio, Physical Review B, 82, 125429 (2010). [DOI: http://dx.doi.org/10.1103/PhysRevB.82.125429]   DOI
4 C.N.R. Rao and A. K. Sood, Graphene: Synthesis, Properties, and Phenomena (Wiley, 2013)]
5 K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C.N.R. Rao, The Journal of Physical Chemistry C, 113, 4257 (2009). [DOI: http://dx.doi.org/10.1021/jp900791y]   DOI
6 Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, and P. Richard, Carbon, 73, 252 (2014). [DOI: http://dx.doi.org/10.1016/j.carbon.2014.02.061]   DOI
7 B. Sanyal and O. Eriksson, Advanced Functional Materials: A Perspective from Theory and Experiment (Elsevier, 2012)
8 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). [DOI: http://dx.doi.org/10.1126/science.1171245]   DOI
9 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Letters, 9, 1752 (2009). [DOI:http://dx.doi.org/10.1021/nl803279t]   DOI
10 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Letters, 9, 30 (2008). [DOI: http://dx.doi.org/10.1021/nl801827v]
11 M. C. Prado, D. Jariwala, T. J. Marks, and M. C. Hersam, Applied Physics Letters, 102 (2013).
12 C. Isaac, A. J. Luis, T. Jifa, and P. C. Yong, New Journal of Physics, 13, 025008 (2011). [DOI: http://dx.doi.org/10.1088/1367-2630/13/2/025008]   DOI
13 X. Wang and H. Dai, Nat. Chem., 2, 661 (2010). http://dx.doi.org/10.1038/nchem.719]   DOI
14 W. S. Lim, Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, J. H. Ahn, I. Chung, B. H. Hong, and G. Y. Yeom, Carbon, 50, 429 (2012). [DOI: http://dx.doi.org/10.1016/j.carbon.2011.08.058]   DOI
15 S. C. Jeon, Y. S. Kim, and D. K. Lee, Trans. Electr. Electron. Mater., 11, 190 (2010). [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.3.145]   DOI
16 T. Tsukamoto and T. Ogino, The Journal of Physical Chemistry C, 115, 8580 2011. [DOI: http://dx.doi.org/10.1021/jp1094933]   DOI
17 F. Schwierz, Nat Nano, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89]   DOI
18 M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B.W.H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, ACS Nano, 3, 2674 (2009). [DOI: http://dx.doi.org/10.1021/nn900744z]   DOI
19 R. Fubo, L. Wen, and D. Lixin, Layer Engineering of Graphene with Oxygen Plasma Etching, Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on 2011.
20 A. K. Geim and K. S. Novoselov, Nat Mater., 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849]   DOI
21 Z. Li, M. He, D. Xu, and Z. Liu, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 18, 1 (2014). [DOI: http://dx.doi.org/10.1016/j.jphotochemrev.2013.10.002]   DOI
22 T. Mueller, F. Xia, and P. Avouris, Nat. Photon., 4, 297 (2010). http://dx.doi.org/10.1038/nphoton.2010.40]   DOI
23 G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Optical Materials Express, 2, 878 (2012). [DOI: http://dx.doi.org/10.1364/OME.2.000878]   DOI
24 A. M. Haider, R. Fubo, L. Wen, and D. Lixin, Nano-Micro Letters, 6, 116 (2014). [DOI: http://dx.doi.org/10.1007/BF03353775]   DOI