• Title/Summary/Keyword: nuclei concentration

Search Result 94, Processing Time 0.143 seconds

Analysis on Change Characteristics of Spatial Structure Related with Urban Planning : Using Spatial Statistical Method (도시계획과 연계한 공간구조의 변화 특성 분석 - 공간통계기법을 이용하여)

  • Seo, Kyung-Min;Kim, Ho-Yong;Lee, Sung-Ho;Kwon, Tae-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.1-14
    • /
    • 2014
  • In this study, the change characteristics of urban spatial structure in Daegu were analyzed connecting with urban planning for efficient urban management. Urban development process from 1970 to 2010 in Daegu was analyzed utilizing Getis-Ord $G_i^*$ methodology, a spatial statistical method, and it was identified that Daegu was in the stage of disurbanization. However, as Daegu orients multi-nuclei city, it was difficult to explain the stage of urban development after disurbanization in 2000. Accordingly, to analyze detailed changes in spatial structure in multi-centric areas after 2000, population, land price and employment factor changes were analyzed using Bachi Measurement. According to analytical results, multi-centralization process has been continued in Daegu. Urban core area and Chilgok area showed spatial structure change into distribution process, Ansim area into concentration process, and Seongseo and Talseo area into concentration and distribution process. Therefore, urban planning considering the regional characteristics are needed for efficient urban management.

Effects of Dietary Copper Exposure on Accumulation and Histopathological Change in Liver of Juvenile Rockfish, Sebastes schlegeli

  • Kim Jae-Won;Kim Seong-Gil;Kim Sang-Gyu;Song Seoung-Yeup;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • Experiments were carried out to investigate the accumulation and the histopathological changes in liver of juvenile rockfish, S. schlegeli, after sub-chronic dietary Cu (0, 50, 125, 250 and 500mg/kg) exposure for 60 days. Cu accumulation in liver was significantly increased with dietary exposure period and concentration for 60 days, and has a linear relation with dietary exposure days. After 60 days of Cu dietary exposure, the Cu concentration in the liver was $75.9\pm12.05,\;126.29\pm22.11\;and\;360.44\pm45.26\;{\mu}g/g$ dry weight and was approximately 11-fold, 18-fold and 51-fold higher than in the control diet group at 125, 250 and 500 mg/kg Cu diet group. The accumulation factors were increased with the dietary exposure period in liver of rockfish. In the primary exposed stage, the effect of hepatic tissue in the rockfish exposed to dietary Cu observed enlargement of hepatocytes nuclei, activity of hepatic cells and the swelling of hepatic cells. While exposed time and concentration were increased, the distinct granulation, irregular shape and necrosis of hepatic cells were observed. It was observed that granule degeneration and necrosis showed a part of cells in hepatic tissue after 60 days at 500 mg/kg.

Synthesis of metallic copper nanoparticles and metal-metal bonding process using them

  • Kobayashi, Yoshio;Nakazawa, Hiroaki;Maeda, Takafumi;Yasuda, Yusuke;Morita, Toshiaki
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.359-372
    • /
    • 2017
  • Metallic copper nanoparticles were synthesised by reduction of copper ions in aqueous solution, and metal-metal bonding by using the nanoparticles was studied. A colloid solution of metallic copper nanoparticles was prepared by mixing an aqueous solution of $CuCl_2$ (0.01 M) and an aqueous solution of hydrazine (reductant) (0.2-1.0 M) in the presence of 0.0005 M of citric acid and 0.005 M of n-hexadecyltrimethylammonium bromide (stabilizers) at reduction temperature of $30-80^{\circ}C$. Copper-particle size varied (in the range of ca. 80-165 nm) with varying hydrazine concentration and reduction temperature. These dependences of particle size are explained by changes in number of metallic-copper-particle nuclei (determined by reduction rate) and changes in collision frequency of particles (based on movement of particles in accordance with temperature). The main component in the nanoparticles is metallic copper, and the metallic-copper particles are polycrystalline. Metallic-copper discs were successfully bonded by annealing at $400^{\circ}C$ and pressure of 1.2 MPa for 5 min in hydrogen gas with the help of the metalli-ccopper particles. Shear strength of the bonded copper discs was then measured. Dependences of shear strength on hydrazine concentration and reduction temperature were explained in terms of progress state of reduction, amount of impurity and particle size. Highest shear strength of 40.0 MPa was recorded for a colloid solution prepared at hydrazine concentration of 0.8 M and reduction temperature of $50^{\circ}C$.

Effects of Precursor Concentration on Surface and Optical Properties of ZnO Nano-Fibrous Thin Films Fabricated by Spin-Coating Method (스핀코팅 방법으로 제작된 ZnO 나노 섬유질 박막의 전구체 농도에 따른 표면 및 광학적 특성)

  • Kim, Min-Su;Kim, Ghun-Sik;Yim, Kwang-Gug;Cho, Min-Young;Jeon, Su-Min;Choi, Hyun-Young;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.483-488
    • /
    • 2010
  • ZnO nano-fibrous thin films with various precursor concentrations ranging from 0.2 to 1.0 mol (M) were grown by spin-coating method and effects of the precursor concentration on surface and optical properties of the ZnO nano-ribrous thin films were investigated by using scanning electron microscopy (SEM) and photoluminescence (PL). ZnO nuclei were formed at the precursor concentration below 0.4 M and the ZnO nano-fibrous thin films were grown at the precursor concentration above 0.6 M. Further increase in the precursor concentration, the thickness of the ZnO nano-fibrous thin films is gradually increased. The intensity and the full-width at half-maximum (FWHM) of the near-band-edge emission (NBE) is increased as the precursor concentration is increased. The deep-level emission (DLE) is red-shifted as the precursor concentration is increased.

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Antarctic Marine Microorganisms and Climate Change: Impacts and Feedbacks

  • Marchant Harvey J.;Davidson Andrew T.;Wright Simon W.
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.401-410
    • /
    • 2001
  • Global climate change will alter many such properties of the Southern Ocean as temperature, circulation, stratification, and sea-ice extent. Such changes are likely to influence the species composition and activity of Antarctic marine microorganisms (protists and bacteria) which playa major role in deter-mining the concentration of atmospheric $CO_2$ and producing precursors of cloud condensation nuclei. Direct impacts of climate change on Antarctic marine microorganisms have been determined for very few species. Increasing water temperature would be expected to result in a southward spread of pelagic cyanobacteria, coccolithophorids and others. Growth rates of many species would be expected to increase slightly but nutrient limitation, especially micronutrients, is likely to result in a negligible increase in biomass. The extent of habitats would be reduced for those organisms presently living close to the upper limit of their thermal tolerance. Increased UVB irradiance is likely to favour the growth of those organisms tolerant of UVB and may change the trophic structure of marine communities. Indirect effects, especially those as a consequence of a diminution of the amount of sea-ice and increased upper ocean stratification, are predicted to lead to a change in species composition and impacts on both trophodynamics and vertical carbon flux.

  • PDF

Synthesis and Characterization of Borosilicate Catalyst (보로실리케이트 촉매의 합성 및 물성에 관한 연구)

  • Kaesoo Lee;Minsoo Cho;Chongsoo Han;Myeongseon Kim;Gon Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.379-387
    • /
    • 1989
  • The synthesis of borosilicate consisted of boron and silicon was stadied. The composition, acidity and adsorption characteristics of synthesized borosilicate were examined. The synthesis rate increased with temperature and concentration of $Na_2O$, but the enhansing effects were different according to the reaction conditons. The synthesis process could be simulated by solution transfer mechanism assuming that crystals grow on the surface of crystal or nuclei with dissolved reactant. Adsorption characteristics of synthesized borosilicate was discussed with temperature programmed desorption patterns of ammonia and propylene and adsorption isotherms of propylene and propane.

  • PDF

Electroless Ni Plating for Memory Device Metallization Using Ultrasonic Agitation (초음파 교반을 이용한 기억소자 Metallization용 무전해 Ni Plating)

  • 우찬희;우용하;박종완;이원해
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.2
    • /
    • pp.109-117
    • /
    • 1994
  • Effect of ultrasonic agitation on the contact properties was studied in Ni electroless plating and Pd activation. P-type Si bare wafers were used as substrate and DMAB was used as reducing agent due to its good electrical properties, solderability and compatibility to substrate. In activation, high density Pd nuclei of small size were formed during ultra-sonic agitation compared to that of no stirring. In electroless plating, the plating rate was enhanced by 30∼90% by using ultrasonic agitation. In elecrtoless plating, inhibitor is the most effective additives in ultrasonic agitation. In this experi-ment, thiourea was used as inhibitor. The less the amount of the inhibitor, the more ultrasonic agitation efficiency. It is confirmed by SEM that Ni-B films formed by ultrasonic were coarser, less porous, and denser than those of no stirring. In ultrasonic agitation, boron content of the films was more than those of no stirring. In this case, the more DMAB concentration, the higher the temperature, the less pH, the more boron content. Resistivity of the films formed by ultrasonic agitation was higher than that of no strirring. As the content of boron was increased, the resistivity of the films was increased exponentially.

  • PDF

Size and Uniformity Variation of Poly(MMA-co-DVB) Particles upon Precipitation Polymerization

  • Yang, Sun-Hye;Shim, Sang-Eun;Lee, Hui-Je;Kim, Gil-Pyo;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.519-527
    • /
    • 2004
  • Stable poly(methyl methacrylate-co-divinylbenzene) (poly(MMA-co-DVB)) microspheres were prepared by precipitation polymerization using acetonitrile as the main medium under various polymerization conditions, including modifications of the agitation speed, monomer and initiator concentrations, DVB content in the monomer mixture, and the use of various cosolvents. Gentle agitation was required to obtain smooth spherical particles. The individually stable microspheres were obtained at monomer concentrations of up to 15 vol% in an acetonitrile medium. The number-average diameter increased linearly with respect to increases in the monomer and initiator concentrations. We found, however, that the uniformity of the microspheres was independent of the variation of the polymerization ingredients because nuclei formation was solely influenced by the crosslinking reaction of the monomers. We obtained higher yields for the polymerization at higher concentrations of monomer and initiator. The concentration of DVB in the monomer mixture composition played an important role in determining not only the size of the microspheres but also the yield of the polymerization. In addition, although we employed various cosolvents as the polymerization medium, we found that acetonitrile/2-methoxyethanol was the only system that provided spherical particles without coagulation. This finding indicates that the precipitation polymerization is strongly dependent on the solvent used as the medium.