Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.6.483

Effects of Precursor Concentration on Surface and Optical Properties of ZnO Nano-Fibrous Thin Films Fabricated by Spin-Coating Method  

Kim, Min-Su (Department of Nano Systems Engineering, Inje University)
Kim, Ghun-Sik (Department of Nano Systems Engineering, Inje University)
Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University)
Cho, Min-Young (Department of Nano Systems Engineering, Inje University)
Jeon, Su-Min (Department of Nano Systems Engineering, Inje University)
Choi, Hyun-Young (Department of Nano Systems Engineering, Inje University)
Lee, Dong-Yul (Epi-manufacturing Technology, Samsung LED Co. Ltd.)
Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University)
Kim, Jong-Su (Department of Physics, Yeungnam University)
Lee, Joo-In (Advanced Instrument Technology Center, Korea Research Institute of Standards and Science)
Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.6, 2010 , pp. 483-488 More about this Journal
Abstract
ZnO nano-fibrous thin films with various precursor concentrations ranging from 0.2 to 1.0 mol (M) were grown by spin-coating method and effects of the precursor concentration on surface and optical properties of the ZnO nano-ribrous thin films were investigated by using scanning electron microscopy (SEM) and photoluminescence (PL). ZnO nuclei were formed at the precursor concentration below 0.4 M and the ZnO nano-fibrous thin films were grown at the precursor concentration above 0.6 M. Further increase in the precursor concentration, the thickness of the ZnO nano-fibrous thin films is gradually increased. The intensity and the full-width at half-maximum (FWHM) of the near-band-edge emission (NBE) is increased as the precursor concentration is increased. The deep-level emission (DLE) is red-shifted as the precursor concentration is increased.
Keywords
Zinc oxide; Spin-coating method; Sol-gel; Scanning electron microscopy; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Ilican, Y. Caglar, and M. Caglar, J. Optorlrctron. Adv. M. 10, 2578 (2008).
2 K. G. Yim, M. S. Kim, G. S. Kim, H. Y. Choi, S. M. Jeon, M. Y. Cho, Y. G. Kim, D. Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J. Y. Leem, J. Korean Vacuum Soc. 19, 281 (2010).   과학기술학회마을   DOI
3 J. Zhao, Z. G. Jin, T. Li, and X. X. Liu, J. Eur. Ceram. Soc. 26, 2769 (2006).   DOI
4 U. N. Maiti, P. K. Ghosh, S. Nandy, and K. K. Chattopadhyay, Physica B 387, 103 (2007).   DOI   ScienceOn
5 L. Bie, X. Yan, J. Yin, Y. Duan, and Z. Yuan, Sens. Actuators B 126, 604 (2007).   DOI
6 J. B. Lee, M. H. Lee, C. K. Park, and J. S. Park, Thin Solid Films 447-448, 296 (2004).   DOI
7 M. K. Gupta, N. Sinha, B. K. Singh, and B. Kumar, Mater. Lett. 64, 1825 (2010).   DOI
8 S. A. Studeninkin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).   DOI
9 M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. A, 203, 2418 (2006).   DOI
10 Q. Wang, Y. Qin, G. J. Xu, L. Chen, Y. Li, L. Duan, Z. X. Li, Y. L. Li, and P. Cui, Ceramics International 34, 1697 (2008).   DOI   ScienceOn
11 E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films 487, 205 (2005).   DOI
12 J. B. Lee, H. J. Lee, S. H. Seo, and J. S. Park, Thin Solid Films 398, 641 (2001).   DOI
13 I. T. Tang, H. J. Ched, W. C. Hwang, Y. C. Wang, M. P. Houng, Y. C. Wang, M. P. Houng, and Y. H. Wang J. Cryst. Growth 262, 461 (2004).   DOI   ScienceOn
14 P. Bhattacharyya, P. K. Basu, H. Saha, and S. Basu, Sensors and Actuators B 124, 62 (2007).   DOI   ScienceOn
15 N. O. V. Plank, M. E. Welland, J. L. MacManus- Driscoll, and L. Schmidt-Mende, Thin Solid Films 516, 7218 (2008).   DOI
16 M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J. S. Son, J. I. Lee, J. H. Kim, E. Kim, D. W. Hwang, and J. Y. Leem, J. Crystal Growth 311, 3568 (2009).   DOI
17 S. Roy and S. Basu, Bull. Mater. Sci. 25, 513 (2002).   DOI
18 Y. Gong, T. Andelman, G. F. Neumark, S. O'Brien, and I. L. Kuskovsky, Nanoscale Res. Lett. 2, 297 (2007).   DOI
19 C. Yuen, S. F. Yu, S. P. Lau, and G. C. K. Chen, J. Cryst. Growth 287, 204 (2006).   DOI   ScienceOn
20 X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).   DOI
21 A. Toumiat, S. Achour, A. Harabi, N. Harabi, N. Tabet, M. Boumaour, and M. Maallemi, Nanotechnology 17, 658 (2006).   DOI
22 K. R. Murali, J. Phys. Chem. Solids 68, 2293 (2007).   DOI
23 K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997).   DOI   ScienceOn
24 Y. H. Kim and S. I. Kim, J. Korean Vacuum Soc. 18, 358 (2009).   과학기술학회마을   DOI
25 H. S. Kim, J. Korean Vacuum Soc. 18, 384 (2009).   과학기술학회마을   DOI
26 P. P. Sahay, S. Tewari, and R. K. Nath, Cryst. Res. Technol. 42, 723 (2007).   DOI