Size and Uniformity Variation of Poly(MMA-co-DVB) Particles upon Precipitation Polymerization

  • Yang, Sun-Hye (Department of Chemical Engineering, Inha University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University) ;
  • Lee, Hui-Je (Department of Chemical Engineering, Inha University) ;
  • Kim, Gil-Pyo (Department of Chemical Engineering, Inha University) ;
  • Choe, Soon-Ja (Department of Chemical Engineering, Inha University)
  • Published : 2004.10.01

Abstract

Stable poly(methyl methacrylate-co-divinylbenzene) (poly(MMA-co-DVB)) microspheres were prepared by precipitation polymerization using acetonitrile as the main medium under various polymerization conditions, including modifications of the agitation speed, monomer and initiator concentrations, DVB content in the monomer mixture, and the use of various cosolvents. Gentle agitation was required to obtain smooth spherical particles. The individually stable microspheres were obtained at monomer concentrations of up to 15 vol% in an acetonitrile medium. The number-average diameter increased linearly with respect to increases in the monomer and initiator concentrations. We found, however, that the uniformity of the microspheres was independent of the variation of the polymerization ingredients because nuclei formation was solely influenced by the crosslinking reaction of the monomers. We obtained higher yields for the polymerization at higher concentrations of monomer and initiator. The concentration of DVB in the monomer mixture composition played an important role in determining not only the size of the microspheres but also the yield of the polymerization. In addition, although we employed various cosolvents as the polymerization medium, we found that acetonitrile/2-methoxyethanol was the only system that provided spherical particles without coagulation. This finding indicates that the precipitation polymerization is strongly dependent on the solvent used as the medium.

Keywords

References

  1. Polymer Dispersions and Their Industrial Applications D. Urban;K. Takamura
  2. Adv. Mater. v.15 H. Fudouz;Y. Xia https://doi.org/10.1002/adma.200304795
  3. Macromol. Symp. v.101 J. Ugelstad;P. Stenstad;L. Kilaas;W. S. Prestvik;A. Rian;K. Nustad;R. Herje;A. Berge https://doi.org/10.1002/masy.19961010155
  4. Polym. Adv. Technol. v.8 V. L. Covolan;L. H. I. Mei;C. L. Rossi https://doi.org/10.1002/(SICI)1099-1581(199701)8:1<44::AID-PAT613>3.0.CO;2-1
  5. Macromol. Chem. Phys. v.204 M. Antoniett;K. Tauer https://doi.org/10.1002/macp.200290083
  6. Dispersion Polymerization in Organic Media K. E. J. Barrett
  7. J. Polym. Sci.: Part A : Polym. Chem. v.31 K. Li;H. D. H. Stover
  8. J. Polym. Sci.; Part A : Polym. Chem. v.30 M. Hattori;E. D. Sudol;M. S. El-Aasser
  9. Adv. Colloid Interf v.13 J. Ugelstad;P. C. Mork;K. Herder Kaggerud;T. Ellingsen;A. Berg https://doi.org/10.1016/0001-8686(80)87003-5
  10. Macromol. Chem. Phys. v.202 J. W. Kim;K. D. Suh https://doi.org/10.1002/1521-3935(20010301)202:5<621::AID-MACP621>3.0.CO;2-K
  11. Colloid. Polym. Sci. v.270 M. Okubo;T. Nakagawa https://doi.org/10.1007/BF00657729
  12. J. Chromatogr.A v.699 K. Ogino;H. Sato;K. Tsuchiya;H. Suzuki;S. Moriguchi https://doi.org/10.1016/0021-9673(95)00031-H
  13. J. Polym. Sci.;Part A : Polym. Chem. v.50 M. Hattori;E. D. Sudol;M. S. El-Aasser
  14. J. Polym. Sci.; Part A: Polym. Chem. v.40 J. Choi;S.-Y. Kwak;S. Kang;S.-S. Lee;M. Park;S. Lim;J. Kim;C. R. Choe;S. I. Hong https://doi.org/10.1002/pola.10514
  15. J. Polym. Sci.; Part A : Polym. Chem. v.31 K. Li;H. D. H. Stover https://doi.org/10.1002/pola.1993.080311313
  16. J. Polym. Sci.;Part A : Polym. Chem. v.37 W.-H. Li;H. D. H. Stover https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2899::AID-POLA23>3.0.CO;2-8
  17. J. Polym. Sci.;Part A : Polym. Chem. v.36 R. S. Frank;J. S. Downey;H. D. H. Stover https://doi.org/10.1002/(SICI)1099-0518(19980930)36:13<2223::AID-POLA8>3.0.CO;2-U
  18. J. Polym. Sci.;Part A : Polym. Chem. v.37 W. H. Li;H. D. H. Stover https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2295::AID-POLA2>3.0.CO;2-J
  19. J. Polym. Sci.;Part A : Polym. Chem. v.42 S. E. Shim;S. Yang;H. H. Choi;S. Choe https://doi.org/10.1002/pola.11028
  20. Macromol. Res. v.12 S. E. Shim;S. Yang;H. Jung;S. Choe https://doi.org/10.1007/BF03218393
  21. J. Polym. Sci.;Part A: Polym. Chem. S. E. Shim;S. Yang;S. Choe
  22. Colloid Polym. Sci. S. E. Shim;S. Yang;M.-J. Jin;Y. H. Chang;S. Choe
  23. Macromolecules v.23 A. J. Paine;W. Luymes;J. McNulty https://doi.org/10.1021/ma00214a012
  24. J. Polym. Sci. Polym. Lett. v.23 C. K. Ober;K. P. Lok;M. L. Hair https://doi.org/10.1002/pol.1985.130230209
  25. CRC Handbook of Solubility Parameters and Other Cohesion Parameters A. F. M. Barton
  26. J. Polym. Sci.;Part A : Polym. Chem. v.33 C. M. Miller;E. D. Sudol;C. A. Silebi;M. S. El-Aasser https://doi.org/10.1002/pola.1995.080330822
  27. Polymer Data Handbook J. E. Mark
  28. Polymer(Korea) v.24 S. E. Shim;J. M. Byun;J. Jun;Y. J. Cha;S. Choe
  29. Can. J. Chem. v.63 K. P. Lok;C. K. Ober https://doi.org/10.1139/v85-033
  30. J. Appl. Polym. Sci. v.85 H. T. Zhang;J. X. Huang;B. B. Jiang https://doi.org/10.1002/app.10840
  31. J. Macromol. Sci. Chem. v.A16 no.7 D. F. Christopher;A. Rudin
  32. J. Polym. Sci.;Part A : Polym. Chem. v.31 S. Shen;E. D. Sudol;M. S. El-Aasser https://doi.org/10.1002/pola.1993.080310606
  33. Macromolecules v.20 C. K. Ober;K. P. Lok https://doi.org/10.1021/ma00168a007