DOI QR코드

DOI QR Code

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Received : 2010.09.29
  • Accepted : 2010.11.12
  • Published : 2010.12.31

Abstract

Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Keywords

References

  1. Aarnio, P., Yli-Tuomi, T., Kousa, A., Makela, T., Hirsikko,A., Hameri, K., Raisanen, M., Hillamo, R., Koskentalo,T., Jantunen, M. (2005) The concentrationsand composition of and exposure to fine particles$(PM_{2.5})$ in the Helsinki subway system. AtmosphericEnvironment 39, 5059-5066. https://doi.org/10.1016/j.atmosenv.2005.05.012
  2. Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N. (2001a)Determinants of fine particle $(PM_{2.5})$ personal exposurelevels in transport microenvironments, London, UK.Atmospheric Environment 35, 4557-4566. https://doi.org/10.1016/S1352-2310(01)00194-7
  3. Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N., Mc-Mullen, M.A.S., Khandelwal, P. (2001b) Fine particle$(PM_{2.5})$ personal exposure levels in transport microenvironments,London, UK. Science of the Total Environment279, 29-44. https://doi.org/10.1016/S0048-9697(01)00723-9
  4. Ansari, A.S., Pandis, S.N. (1998) Response of inorganicPM to precursor concentrations. Environmental Scienceand Technology 32, 2706-2714. https://doi.org/10.1021/es971130j
  5. Armstrong, J.T., Buseck, P.R. (1985) A general characteristicfluorescence correction for the quantitative electronmicrobeam analysis of thick specimens, thin filmsand particles. X-Ray Spectrometry 14, 172-182. https://doi.org/10.1002/xrs.1300140408
  6. Armstrong, J.T. (1991) Electron Probe Quantitation (HeinrichK.F.J. and Newbury, D.E. Eds.), Plenum Press,New York, pp. 261-316.
  7. Athanasopoulou, E., Tombrou, M., Pandis, S.N., Russell,A.G. (2008) The role of sea-salt emissions and heterogeneouschemistry in the air quality of polluted coastalareas. Atmospheric Chemistry and Physics 8, 3807-3841.
  8. Beine, H.J., Krognes, T. (2000) The seasonal cycle ofperoxyacetyl nitrate (PAN) in the European Arctic.Atmospheric Environment 34, 933-940. https://doi.org/10.1016/S1352-2310(99)00288-5
  9. Beine, H.J., Domine, F., Ianniello, A., Nardino, M., Allegrini,I., Teinila, K., Hillamo, R. (2003) Fluxes ofnitrates between snow surfaces and the atmosphere inthe European high Arctic. Atmospheric Chemistry andPhysics 3, 335-346. https://doi.org/10.5194/acp-3-335-2003
  10. Birenzvige, A., Eversole, J., Seaver, M., Francesconi, S,Valdes, E., Kulaga, H. (2003) Aerosol Characteristicsin a Subway Environment. Aerosol Science Technology 37, 210-220. https://doi.org/10.1080/02786820300941
  11. Bishop, A.N., Kearsley, A.T., Patience, R.L. (1992) Analysisof sedimentary organic materials by scanning electronmicroscopy: the application of backscattered electronimagery and light element X-ray microanalysis.Organic Geochemistry 18, 431-446. https://doi.org/10.1016/0146-6380(92)90106-8
  12. Branis, M. (2006) The contribution of ambient sources toparticulate pollution in spaces and trains of the Pragueunderground transport system. Atmospheric Environment40, 348-356. https://doi.org/10.1016/j.atmosenv.2005.09.060
  13. Carmichael, G.R., Hong, M., Ueda, H., Chen, L., Murano,K., Park, J.K., Lee, H., Kim, Y., Shim, S. (1997)Aerosol Composition at Cheju Island, Korea. Journalof Geophysical Research D5, 6047-6061.
  14. Carson, P.G., Johnston, M.V., Wexler, A.S. (1997) Real-Time Monitoring of the Surface and Total Compositionof Aerosol Particles. Aerosol Science and Technology26, 291-300. https://doi.org/10.1080/02786829708965431
  15. Chapin, III, F.S., Sturm, M., Serreze, M.C., McFadden,J.P., Key, J.R., Lloyd, A.H., McGuire, A.D., Rupp,T.S., Lynch, A.H., Schimel, J.P., Beringer, J., Chapman,W.L., Epstein, H.E., Euskirchen, E.S., Hinzman,L.D., Jia, G., Ping, C.-L., Tape, K.D., Thompson,C.D.C., Walker, D.A., Welker J.M. (2005) Role of landsurfacechanges in arctic summer warming. Science310, 657-660. https://doi.org/10.1126/science.1117368
  16. Chen, Y., Shah, N., Braun, A., Huggins, F.E., Huffman,G.P. (2005) Electron microscopy investigation of carbonaceousparticulate matter generated by combustionof fossil fuels. Energy Fuels 19, 1644-1651. https://doi.org/10.1021/ef049736y
  17. Chillrud, S.N., Epstein, D., Ross, J.M., Sax, S.N., Pederson,D., Spengler, J.D., Kinney, P.L. (2004) ElevatedAirborne Exposures of Teenagers to Manganese, Chromium,and Iron from Steel Dust and New York City’sSubway System. Environmental Science and Technology36, 732-737.
  18. Chow, J.C., Liu, C.S., Cassmassi, J., Watson, J.G., Lu,Z., Pritchett, L.C. (1992) A neighborhood-scale studyof $PM_{10}$. Atmospheric Environment 26A, 693-706.
  19. Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J.,Crutzen, P.J. (1996) Role of mineral aerosol as a reactivesurface in the global troposphere. Journal of GeophysicalResearch D17, 22869-22889.
  20. Drouin, D., Hovington, P., Gauvin, R. (1997) CASINO:A New Monte Carlo Code in C Language for ElectronBeam Interactions-Part II: Tabulated Values of the MottCross Section. Scanning 19, 20-28. https://doi.org/10.1002/sca.4950190103
  21. Friedman, B., Herich, H., Kammermann, L., Gross, D.S.,Arneth, A., Holst, T., Cziczo, D.J. (2009) Subarcticatmospheric aerosol composition: 1. Ambient aerosolcharacterization. Journal of Geophysical Research 114,D13203, doi:10.1029/2009JD011772.
  22. Frustorfer, P., Niessner, R. (1994) Identification and Classificationof Airborne soot Particles Using an AutomatedSEM/EDX. Mikrochimica Acta 113, 239-250. https://doi.org/10.1007/BF01243614
  23. Furuya, K., Kudo, Y., Okinaga, K., Yamuki, M., Takahashi,S., Araki, Y., Hisamatsu, Y. (2001) Seasonal variationand their characterization of suspended particulatematter in the air of subway stations. Journal of Traceand Microprobe Techniques 19, 469-485. https://doi.org/10.1081/TMA-100107583
  24. Gard, E., Mayer, J.E., Morrical, B.D., Dienes, T., Fergenson,D.P., Prather, K.A. (1997) Real-Time Analysis ofIndividual Atmospheric Aerosol Particles: Design andPerformance of a Portable ATOFMS. AnalyticalChemistry 69, 4083-4091. https://doi.org/10.1021/ac970540n
  25. Gard, E.E., Kleeman, M.J., Gross, D.S., Hughes, L.S.,Allen, J.O., Morrical, B.D., Fergenson, D.P., Dienes,T., Galli, M.E., Johnson, R.J., Cass, G.R., Prather,K.A. (1998) Direct observation of heterogeneous chemistryin the atmosphere. Science 279, 1184-1187. https://doi.org/10.1126/science.279.5354.1184
  26. Geng, H., Jung, H.-J., Park, Y., Hwang, H., Kim, H., Kim,Y.J., Sunwoo, Y., Ro, C.-U. (2009a) Morphological andchemical composition characteristics of summertimeatmospheric particles collected at Tokchok Island,Korea. Atmospheric Environment 43, 3364-3373. https://doi.org/10.1016/j.atmosenv.2009.03.034
  27. Geng, H., Park, Y., Hwang, H., Kang, S., Ro, C.-U.(2009b) Elevated nitrogen-containing particles observedin Asian dust aerosol samples collected at the marineboundary layer of the Bohai Sea and the YellowSea. Atmospheric Chemistry and Physics 9, 6933-6947. https://doi.org/10.5194/acp-9-6933-2009
  28. Geng, H., Ryu, J., Jung, H.-J., Chung, H., Ahn, K., Ro,C.-U. (2010) Single-Particle Characterization of SummertimeArctic Aerosols Collected at Ny-Alesund, Svalbard,Environmental Science and Technology 44,2348-2353. https://doi.org/10.1021/es903268j
  29. Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C.,Echlin, P., Lifshin, E., Sawyer, L., Michael, J. (2003)Scanning Electron Microscopy and X-ray Microanalysis(3rd Ed.) Kluwer-Plenum, New York, pp. 391-450.
  30. Hamilton, R.S., Kershaw, P.R., Segarra, F., Spears C.J.,Watt, J.M. (1994) Detection of airborne carbonaceousparticulate matter by scanning electron microscopy.Science of the Total Environment 146/147, 303-308. https://doi.org/10.1016/0048-9697(94)90250-X
  31. Harrington, P.B., Street, T.E., Voorhees, K.J., di Brozolo,F.R., Odom, R.W. (1989) Rule-Building Expert Systemfor Classification of Mass Spectra. Analytical Chemistry61, 715-719. https://doi.org/10.1021/ac00182a015
  32. Hoffman, R.C., Laskin A., Finlayson-Pitts, B.J. (2004) Sodiumnitrate particles: physical and chemical propertiesduring hydration and dehydration, and implicationsfor aged sea salt aerosols. Journal of Aerosol Science35, 869-887. https://doi.org/10.1016/j.jaerosci.2004.02.003
  33. Hopkins, R.J., Desyaterik, Y., Tivanski, A.V., Zaveri,R.A., Berkowitz, C.M., Tyliszczak, T., Gilles, M.K.,Laskin, A. (2008) Chemical speciation of sulfur inmarine cloud droplets and particles: Analysis of individualparticles from the marine boundary layer over theCalifornia current. Journal of Geophysical Research113, D04209, doi:10.1029/2007JD008954.
  34. Hovington, P., Drouin, D., Gauvin, R. (1997a) CASINO:A New Monte Carlo Code in C Language for ElectronBeam Interactions-Part I: Description of the Program.Scanning 19, 1-14. https://doi.org/10.1002/sca.4950190101
  35. Hovington, P., Drouin, D., Gauvin, R., Joy, D.C., Evans,N. (1997b) CASINO: A New Monte Carlo Code in CLanguage for Electron Beam Interactions-Part III:Stopping Power at Low Energies. Scanning 19, 29-35. https://doi.org/10.1002/sca.4950190104
  36. Hughes, L.S., Allen, J.O., Kleeman, M.J., Johnson, R.J.,Cass, G.R., Gross, D.S., Gard, E.E., Galli, M.E., Morrical,B.D., Fergenson, D.P., Dienes, T., Noble, C.A.,Liu, D.Y., Silva, P.J., Prather, K.A. (1999) Size andComposition Distribution of Atmospheric Particles inSouthern California. Environmental Science and Technology33, 3506-3515. https://doi.org/10.1021/es980884a
  37. Hwang, H., Ro, C.-U. (2006) Direct observation of nitrateand sulfate formations from mineral dust and sea-saltsusing low-Z particle electron probe X-ray microanalysis.Atmospheric Environment 40, 3869-3880. https://doi.org/10.1016/j.atmosenv.2006.02.022
  38. Ianniello, A., Beine, H.J., Sparapani, R., Di Bari, F., Allegrini,I., Fuentes, J.D. (2002) Denuder measurementsof gas and aerosol species above Arctic snow surfacesat Alert 2000. Atmospheric Environment 36, 5299-5309. https://doi.org/10.1016/S1352-2310(02)00646-5
  39. Jambers, W., Van Grieken, R. (1997) Single Particle Characterizationof Inorganic Suspension in Lake Baikal,Siberia. Environmental Science and Technology 31,1525-1533. https://doi.org/10.1021/es9608003
  40. Johansson, C., Johansson, P.-A. (2003) Particulate matterin the underground of Stockholm. Atmospheric Environment37, 3-9.
  41. Karlsson, H.L., Nilsson, L., Moller, L. (2005) SubwayParticles Are More Genotoxic than Street Particles andInduce Oxidative Stress in Cultured Human Lung Cells.Chemical Research and Toxicology 18, 19-23. https://doi.org/10.1021/tx049723c
  42. Karlsson, H.L., Ljungman, A.G., Lindbom, J., Moller, L.(2006) Comparison of genotoxic and inflammatoryeffects of particles generated by wood combustion, aroad simulator and collected from street and subway.Toxicological Letter, 165, 203-211. https://doi.org/10.1016/j.toxlet.2006.04.003
  43. Kang, S., Hwang, H., Park, Y., Kim, H., Ro, C.-U. (2008)Chemical compositions of subway particle in Seoul,Korea determined by a quantitative single particle analysis.Environmental Science and Technology 42,9051-9057. https://doi.org/10.1021/es802267b
  44. Kang, S., Hwang, H., Kang, S., Park, Y., Kim, H., Ro,C.-U. (2009) Quantitative ED-EPMA combined withmorphological information for the characterization ofindividual aerosol particles collected in Incheon, Korea.Atmospheric Environment 43, 3445-3453. https://doi.org/10.1016/j.atmosenv.2009.05.008
  45. Kawamura, K., Narukawa, M., Li, S.-M., Barrie, L.A.(2007) Size distributions of dicarboxylic acids and inorganicions in atmospheric aerosols collected duringpolar sunrise in the Canadian high Arctic. Journal ofGeophysical Research 112, D10307, doi:10.1029/2006JD008244.
  46. Koutny, L.B., Yeung, E.S. (1993) Expert System for DataAcquisition To Achieve a Constant Signal-to-NoiseRatio: Application to Imaging of DNA SequencingGels. Analytical Chemistry 65, 148-152. https://doi.org/10.1021/ac00050a010
  47. Krueger, B.J., Grassian, V.H., Cowin, J.P., Laskin, A.(2004) Heterogeneous chemistry of individual mineraldust particles from different dust source regions: theimportance of particle mineralogy. Atmospheric Environment38, 6253-6261. https://doi.org/10.1016/j.atmosenv.2004.07.010
  48. Laskin, A., Iedema, M.J., Cowin, J.P. (2002) Quantitativetime-resolved monitoring of nitrate formation in seasalt particles using a CCSEM/EDX single particleanalysis. Environmental Science and Technology 36,4948-4955. https://doi.org/10.1021/es020551k
  49. Laskin, A., Gaspar, D.J., Wang, W., Hunt, S.W., Cowin,J.P., Colson, S.D., Finlayson-Pitts, B.J. (2003) Reactionsat interfaces as a source of sulfate formation in sea-saltparticles. Science 301, 340-344. https://doi.org/10.1126/science.1085374
  50. Laskin, A., Smith, J., Laskin, J. (2009) Molecular characterizationof nitrogen-containing organic compoundsin biomass burning aerosols using high-resolution massspectrometry. Environmental Science and Technology43, 3764-3771. https://doi.org/10.1021/es803456n
  51. Labar, J.L., Torok, S. (1992) A Peak-to-Background Methodfor Electron Probe X-Ray Microanalysis Appliedto Individual Small Particles. X-Ray Spectrometry 21,183-190. https://doi.org/10.1002/xrs.1300210407
  52. Law, K.S., Stohl, A. (2007) Arctic Air Pollution: Originsand Impacts. Science 315, 1537-1540. https://doi.org/10.1126/science.1137695
  53. Lohmann, U., Leck, C. (2005) Importance of submicronsurface-active organic aerosols for pristine Arcticclouds. Tellus 57B, 261-268.
  54. May, K.R. (1975) An ultimate cascade impactor for aerosolassessment. Journal of Aerosol Science 6, 1-7. https://doi.org/10.1016/0021-8502(75)90036-1
  55. Morin, S., Savarino, J., Frey, M.M., Yan, N., Bekki, S.,Bottenheim, J.W., Martins, J.M. (2008) Tracing theorigin and fate of $NO_x$ in the Arctic atmosphere usingstable isotopes in nitrate. Science 322, 730-732. https://doi.org/10.1126/science.1161910
  56. Murphy, D.M., Thomson, D.S. (1997a) Chemical compositionof single aerosol particles at Idaho Hill: Positiveion measurements. Journal of Geophysical Research102, 6341-6352. https://doi.org/10.1029/96JD00858
  57. Murphy, D.M., Thomson, D.S. (1997b) Chemical compositionof single aerosol particles at Idaho Hill: Negativeion measurements. Journal of Geophysical Research102, 6353-6368. https://doi.org/10.1029/96JD00859
  58. Noble, C.A., Prather, K.A. (1996) Real-Time Measurementof Correlated Size and Composition Profiles of IndividualAtmospheric Aerosol Particles. EnvironmentalScience and Technology 30, 2667-2680. https://doi.org/10.1021/es950669j
  59. Nyeki, S., Coulson, G., Colbeck, I., Eleftheriadis, K., Baltensperger,U., Beine, H.J. (2005) Overview of aerosolmicrophysics at Arctic sunrise: measurements duringthe NICE renoxification study. Tellus 57B, 40-50.
  60. Ohta, S., Fukasawa, T., Muroa, N., Makarov, V.N. (1995)Summer concentrations of atmospheric pollutants inurban and rural areas of Siberia. Journal of GlobalEnvironmental Engineering 1, 15-26.
  61. Osan, J., Torok, S., Torok, K., Nemeth, L., Labar, J.L.(1996) Physiological effect of accidental fly ash depositionon plants and chemical study of the dusted plantleaves by XRF and EPMA. X-ray Spectrometry 25,167-172. https://doi.org/10.1002/(SICI)1097-4539(199607)25:4<167::AID-XRS156>3.0.CO;2-U
  62. Osan, J., Szaloki, I., Ro, C.-U., Van Grieken, R. (2000)Light Element Analysis of Individual MicroparticlesUsing Thin-Window EPMA. Mikrochimica Acta 132,349-355. https://doi.org/10.1007/s006040050079
  63. Polissar, A.V., Hopke, P.K., Piorot, R.L. (2001) AtmosphericAerosol over Vermont: Chemical Compositionand Sources. Environmental Science and Technology35, 4604-4621. https://doi.org/10.1021/es0105865
  64. Posfai, M., Gelencser, A., Simonics, R., Arato, K., Li, J.,Hobbs, P.V., Buseck, P.R. (2004) Atmospheric tarballs: Particles from biomass and biofuel burning. Journalof Geophysical Research 109, D06213, doi:10.1029/2003JD004169.
  65. Ro, C.-U., Osan, J., Van Grieken, R. (1999) Determinationof low-Z elements in individual environmentalparticles using windowless EPMA. Analytical Chemistry71, 1521-1528. https://doi.org/10.1021/ac981070f
  66. Ro, C.-U., Osan, J., Szaloki, I., Oh, K.-Y., Van Grieken,R. (2000) Determination of chemical species in individualaerosol particles using ultrathin window EPMA.Environmental Science and Technology 34, 3023-3030. https://doi.org/10.1021/es9910661
  67. Ro, C.-U., Oh, K.-Y., Kim, H., Chun, Y.-S., Osán, J., deHoog, J., Van Grieken, R. (2001a) Chemical speciationof individual atmospheric particles using low-Zelectron probe X-ray microanalysis: characterizing“Asian Dust” deposited with rainwater in Seoul, Korea.Atmospheric Environment 35, 4995-5005. https://doi.org/10.1016/S1352-2310(01)00287-4
  68. Ro, C.-U., Oh, K.-Y., Kim, H., Kim, Y.P., Lee, C.B., Kim,K.H., Osan, J., de Hoog, J., Worobiec, A., Van Grieken,R. (2001b) Single Particle Analysis of Aerosols atCheju Island, Korea, Using Low-Z Electron Probe XrayMicroanalysis: A Direct Proof of Nitrate Formationfrom Sea-Salts. Environmental Science and Technology35, 4487-4494. https://doi.org/10.1021/es0155231
  69. Ro, C.-U., Kim, H., Oh, K.-Y., Yea, S.K., Lee, C.B.,Jang, M., Van Grieken, R. (2002) Single-Particle Characterizationof Urban Aerosol Particles Collected inThree Korean Cities Using Low-Z Electron Probe XrayMicroanalysis. Environmental Science and Technology,36, 4770-4776. https://doi.org/10.1021/es025697y
  70. Ro, C.-U., Osan, J., Szaloki, I., de Hoog, J., Worobiec,A., Van Grieken, R. (2003) A Monte Carlo program forquantitative electron-induced X-ray analysis of individualparticles. Analytical Chemistry 75, 851-859. https://doi.org/10.1021/ac025973r
  71. Ro, C.-U., Kim, H., Van Grieken, R. (2004) An ExpertSystem for Chemical Speciation of Individual ParticlesUsing Low-Z Particle Electron Probe X-ray MicroanalysisData. Analytical Chemistry 76, 1322-1327. https://doi.org/10.1021/ac035149i
  72. Ro, C.-U., Hwang, H., Kim, H., Chun, Y., Van Grieken,R. (2005) Single-Particle Characterization of FourAsian Dust Samples Collected in Korea, Using Low-ZParticle Electron Probe X-ray Microanalysis. EnvironmentalScience and Technology 39, 1409-1419. https://doi.org/10.1021/es049772b
  73. Salma, I., Weidinger, T., Maenhaut, W. (2007) Timeresolvedmass concentration, composition and sourcesof aerosol particles in a metropolitan undergroundrailway station. Atmospheric Environment 41, 8391-8405. https://doi.org/10.1016/j.atmosenv.2007.06.017
  74. Satheesh, S.K., Moorthy, K.K. (2005) Radiative effects ofnatural aerosols: A review, Atmospheric Environment39, 2089-2110. https://doi.org/10.1016/j.atmosenv.2004.12.029
  75. Seaton, A., Cherrie, J., Dennekamp, M., Donaldson, K.,Hurley, J.F., Tran, C.L. (2005) The London Underground:dust and hazards to health. Occupational andEnvironmental Medicine 62, 355-362. https://doi.org/10.1136/oem.2004.014332
  76. Sitzmann, B., Kendal, M., Williams, I. (1999) Characterisationof airborne particles in London by computer-controlled scanning electron microscopy. Scienceof the Total Environment 241, 63-73. https://doi.org/10.1016/S0048-9697(99)00326-5
  77. Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., Tang,Y., Carmichael, G.R., Prather, K.A. (2007) Mineral dustis a sink for chlorine in the marine boundary layer.Atmospheric Environment 41, 7166-7179. https://doi.org/10.1016/j.atmosenv.2007.05.047
  78. Szaloki, I., Osan, J., Ro, C.-U., Van Grieken, R. (2000)Quantitative characterization of individual aerosol particlesby thin-window EPMA combined with iterativesimulation. Spectrochimica Acta B55, 1017-1030.
  79. Teinila, K., Hillamo, R., Kerminen, V.-M., Beine, H.J.(2003) Aerosol chemistry during the NICE dark andlight campaigns. Atmospheric Environment 37, 563-575. https://doi.org/10.1016/S1352-2310(02)00826-9
  80. Van Borm, W.A., Adams, F.C. (1989) Characterizationof individual particles in the Antwerp aerosol. AtmosphericEnvironment 23, 1139-1151. https://doi.org/10.1016/0004-6981(89)90315-6
  81. Van Borm, W., Adams, F.C., Maenhaut, W. (1990) Receptormodeling of the Antwerp aerosol. Atmospheric Environment24B, 419-435.
  82. Vekemans, B., Janssens, K., Vincze, L., Adams, F., VanEspen, P. (1994) Analysis of X-ray spectra by iterativeleast squares (AXIL): new developments. X-Ray Spectrometry23, 278-285. https://doi.org/10.1002/xrs.1300230609
  83. Weast, R.C., Astle, M.J., Beyer, W.H., Eds. (1984) CRCHandbook of Chemistry and Physics, CRC Press, BocaRaton, FL, pF-154.
  84. Xie, Z., Sun, L., Blum, J.D., Huang, Y., He, W. (2006)Summertime aerosol chemical components in the marineboundary layer of the Arctic Ocean. Journal of GeophysicalResearch 111, D10309, doi:10.1029/2005JD006253.
  85. Xie, Z., Blum, J.D., Utsunomiya, S., Ewing, R.C., Wang,X., Sun, L. (2007) Summertime carbonaceous aerosolscollected in the marine boundary layer of the ArcticOcean. Journal of Geophysical Research 112, D02306,doi:10.1029/2006JD007247.
  86. Yamagata, S., Kobayashi, D., Ohta, S., Murao, N., Shiobara,M., Wada, M., Yabuki, M., Konishi, H., Yamanouchi,T. (2009) Properties of aerosols and their wetdeposition in the arctic spring during ASTAR2004 at$Ny-{\AA}lesund$, Svalbard. Atmospheric Chemistry andPhysics 9, 261-270. https://doi.org/10.5194/acp-9-261-2009
  87. Yang, G.P., Zhang, H.H., Su, L.P., Zhou, L.M. (2009)Biogenic emission of dimethylsulfide (DMS) from theNorth Yellow Sea, China and its contribution to sulfatein aerosol during summer. Atmospheric Environment43, 2196-2203. https://doi.org/10.1016/j.atmosenv.2009.01.011
  88. Yli-Tuomi, T., Venditte, L., Hopke, P.K., Basunia, M.S.,Landsberger, S., Viisanen, Y., Paatero, J. (2003) Compositionof the Finnish Arctic aerosol: collection andanalysis of historic filter samples. Atmospheric Environment37, 2355-2364. https://doi.org/10.1016/S1352-2310(03)00164-X
  89. Zhang, D., Shi, G.Y., Iwasaka, Y., Hu, M. (2000) Mixtureof sulfate and nitrate in coastal atmospheric aerosols:individual particle studies in Qingdao $(36^{\circ}04′N,\;120^{\circ}21′E)$, China. Atmospheric Environment 34, 2669-2679. https://doi.org/10.1016/S1352-2310(00)00078-9
  90. Zhang, W., Chait, B.T. (2000) ProFound: An Expert Systemfor Protein Identification Using Mass SpectrometricPeptide Mapping Information. Analytical Chemistry72, 2482-2489. https://doi.org/10.1021/ac991363o
  91. Zhang, Z., Friedlander, S.K. (2000) A Comparative Studyof Chemical Databases for Fine Particle Chinese Aerosols.Environmental Science and Technology 34, 4687-4694. https://doi.org/10.1021/es001147t
  92. Zimmer, A.T., Biswas, P. (2001) Characterization of theaerosols resulting from arc welding processes. Journalof Aerosol Science 32, 993-1008.

Cited by

  1. (Atomic Number) Particle Electron Probe X-ray Microanalysis vol.61, pp.11, 2011, https://doi.org/10.1080/10473289.2011.604286
  2. Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China vol.6, pp.2, 2012, https://doi.org/10.5572/ajae.2012.6.2.083
  3. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains vol.64, pp.9, 2014, https://doi.org/10.1080/10962247.2014.923350
  4. Chemical Properties of the Individual Asian Dust Particles Clarified by Micro-PIXE Analytical System vol.8, pp.3, 2014, https://doi.org/10.5572/ajae.2014.8.3.154
  5. Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform vol.9, pp.3, 2015, https://doi.org/10.5572/ajae.2015.9.3.228
  6. Levels of formaldehyde and TVOCs and influential factors of 100 underground station environments from 2013 to 2015 vol.24, pp.4, 2018, https://doi.org/10.1080/10807039.2017.1405341
  7. Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique vol.11, pp.3, 2010, https://doi.org/10.5194/acp-11-1327-2011
  8. Observation of chemical modification of Asian Dust particles during long-range transport by the combined use of quantitative ED-EPMA and ATR-FT-IR imaging vol.12, pp.10, 2010, https://doi.org/10.5194/acpd-12-27297-2012
  9. Physicochemical Properties of Indoor Particulate Matter Collected on Subway Platforms in Japan vol.6, pp.2, 2012, https://doi.org/10.5572/ajae.2012.6.2.073