• Title/Summary/Keyword: nuclear power industry

Search Result 441, Processing Time 0.029 seconds

Practical Issues of Earned Value Management Systems (EVMS) for Nuclear Power Plant (NPP) Construction

  • Jung, Youngsoo;Kim, Sungrae;Moon, Byeong-Suk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.696-697
    • /
    • 2015
  • Cost, schedule, and quality are the three major performance indicators for any construction project. Under the globalized competition in the nuclear industry, researchers and practitioners have also explored a systemized and integrated management system for cost, schedule, and quality. In order to address this issue, the concept of earned value management system (EVMS) has been often utilized. However, implementing EVMS for a mega-project of nuclear power plant (NPP) construction requires extensive overhead efforts. Though previous studies proposed structures and methods for effective NPP EVMS, there has been no legitimate study for data collection strategy for practical implementation. In this context, the purpose of this paper is to develop an effective data collection strategy for NPP EVMS. Firstly, the barriers to practical NPP EVMS were identified based on literature review and expert interviews. Strategies for data collection were then developed based on different phases of project life cycle. This study focuses on the 'life-cycle integrated progress management system' for NPP construction from an owner's perspective Therefore, results of this study can be used as a guide for preparing request for proposals (RFP) of an NPP owner organization.

  • PDF

Analysis of Cost Estimate Method Based on Engineering 3D Model for Nuclear Power Plant Construction Project (엔지니어링 3D모델 기반 원전 건설사업비 산정방안 분석)

  • Lee, Sang-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.294-295
    • /
    • 2018
  • Nowadays, the construction industry utilizes 3D models in the designing process, on which research is being conducted to establish an automated system for project cost estimation in connection with information related to construction such as material unit costs and wages, beyond the level of design interference review and construction quantity estimation. In this process, the project cost is estimated in connection with unit price data after takeoff the quantity based on the 3D model attributes and data types. A way to reduce cost and risk would be first developing prototypes of some of essential buildings and works, comparing and validating the outcomes, and then extending to the whole scope, because estimates differ on the basis of the scope and level of 3D design models as well as the data accuracy. This study analyzes case studies of project cost estimation by computing the quantity on the basis of 3D model in the construction industry and explores methodologies and management measures applicable for estimating nuclear power plant construction project costs.

  • PDF

A Study on the Improvement and Application Plans of Korean Nuclear Safety Regulations for their Application on Nuclear powered ships (원자력 선박 적용을 위한 국내 원자력 안전규제 개선 및 적용방안에 관한 고찰)

  • Jaehyun Kim;Junseop Jang;Seungmin Kwon;Sinhyeong Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2024
  • As a global effort for eco-friendly, the ship building is making great efforts to develop ships using low-carbon, eco-friendly alternative fuels. Nuclear energy, one of several eco-friendly alternative energy sources, is evaluated as an effective alternative for future ships by minimizing carbon emissions and securing economic feasibility with low power generation cost. However, although appropriate regulatory requirements are necessary for commercialization of nuclear powered ships, there are currently no regulatory requirements for nuclear powered ships in Korea. In this study, accordingly, domestic and international regulatory requirements related to nuclear powered ships were reviewed, matters to be considered in terms of safety when developing domestic marine nuclear reactor regulatory requirements were derived, and a licensing regulatory system for nuclear powered ships was derived.This study is expected to be used as basic reference data when developing regulatory requirements for nuclear powered ships.

Applicability of HRA to Support Advanced MMI Design Review

  • Kim, Inn-Seock
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.88-98
    • /
    • 2000
  • More than half of all incidents in large complex technological systems, particularly in nuclear power or aviation industries, were attributable in some way to human erroneous actions. These incidents were largely due to the human engineering deficiencies of man-machine interface (MMI). In nuclear industry, advanced computer-based MMI designs are emerging as part of new reactor designs. The impact of advanced MMI technology on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in nuclear power plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e., ATHEANA and CREAM, with the potential to assist the design review process.

  • PDF

Instrumentation and control systems design for nuclear power plant: An interview study with industry practitioners

  • Singh, Pooja;Singh, Lalit Kumar
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3694-3703
    • /
    • 2021
  • Instrumentation and Control systems (I&C) play a significant role in nuclear power plants (NPP) and other safety critical systems (SCS). We have conducted a rigorous study and discussions with experienced practitioners worldwide the strategy for the development of I&C systems to investigate the several aspects related to their dependability. We discussed with experienced practitioners that work on nuclear domain with the intention of knowing their approach, they use day-to-day for the development of such systems. The aim of this research is to obtain to provide guidance to those building I&C systems of NPP and have implications on state engineering licensure boards, in the determination of legal liability, and in risk assessment for policymakers, corporate governors, and insurance executives.

New Businesses and Challenges related to Japan's Electricity System Reform (일본 전력시스템개혁에 따른 지능형 사업 발전과 도전과제)

  • Park, Chan-Kook;Kim, Yang-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.1-9
    • /
    • 2015
  • The Japanese government has carried out the power industry reform in three phases to supply power stably, control the rise of electricity tariff, and expand consumer choices. The reform of the Japanese electric power industry fosters new kinds of businesses as well as changes the competitive structure in which the enterprises participating electricity business compete. However, for the power industry restructuring to be done smoothly, the accompanying tasks should be carried out. Korea has also been devoting a lot of efforts to cultivate various types of new industries based on the convergence of energy and information and communications technology. If there are the same kinds of new industries between the two countries, the progresses of the industries can be compared to each other over a period of time.

Development of the Predictive Maintenance Methodology for Rod Control System in Nuclear Power Plant (원전 제어봉제어시스템 예방정비 방법론 개발)

  • Yim, Hyeong-Soon;Hong, Hyeong-Pyo;Han, Hee-Hwan;Koo, Jun-Mo;Kim, Hang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2058-2060
    • /
    • 2002
  • The demand for safety and reliability of Nuclear Power Plants (NPPs) has been constantly increasing and economical operation is also an important issue. Developing and adopting predictive maintenance technology for the major systems or equipment is considered as one way to achieve these goals. This paper suggests the predictive maintenance methodology that can be applied to NPPs and describes a sample application of the Rod Control System (RCS) to verify the effectiveness of the methodology. It is expected that the same methodology can be adopted for other systems of NPPs and general industry fields when its effectiveness is verified.

  • PDF

Manufacturing and Performance Test of Obsolete Valve in NPP using DED Metal 3D Printing Technology (원전 단종 밸브의 DED 방식 금속 3D프린팅 제작 및 성능시험)

  • Kyungnam Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • The 3D printing technology is one of the fourth industrial revolution technology that drives innovation in the manufacturing process, and should be applied to nuclear industry for various purposes according to the manufacturing trend change. In nuclear industry, it can be applied to manufacture obsolete items and new designed parts in advanced reactors or small modular reactors (SMRs), replacing the traditional manufacturing technologies. A gate valve body was manufactured, which was obsolete in nuclear power plant, using DED(Directed Energy Deposition) metal 3D printing technology after restoring design characteristics including 3D design drawing by reverse engineering. The 3D printed valve body was assembled with commercial parts such as seat-ring, disk, stem, and actuator for performance test. For the valve assembly, including 3D printed valve body, several tests were performed, including pressure test, end-loading test, and seismic test according to KEPIC MGG and KEPIC MFC. In the pressure test, hydraulic pressure of 391kgf/cm2 was applied to 3D printed valve body, and no leak was detected. Also the 3D printed valve assembly was performed well in end-loading and seismic tests.

Consideration for Application of 3D Printing Technology to Nuclear Power Plant (3D프린팅 기술의 원전 적용을 위한 고찰)

  • Jang, Kyung-Nam;Choi, Sung-Nam;Lee, Sung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.117-124
    • /
    • 2020
  • 3D printing is a technology that has significantly grown in recent years, particularly in the aerospace, defense, and medical sectors where it offers significant potential cost savings and reduction of the supply chain by allowing parts to be manufactured on-site rather than at a distance supplier. In nuclear industry, 3D printing technology should be applied according to the manufacturing trend change. For the application of 3D printing technology to the nuclear power plant, several problems, including the absence of code & standards of materials, processes and testing & inspection methods etc, should be solved. Preemptively, the improvement of reliability of 3D printing technology, including mechanical properties, structural performance, service performance and aging degradation of 3D printed parts should be supported. These results can be achieved by collaboration of many organizations such as institute, 3D printer manufacturer, metal powder supplier, nuclear part manufacturer, standard developing organization, and nuclear utility.

A pplication of $CO_2$ Technolgy in Nuclear Decontamination (원자력 제염에서 $CO_2$ 기술 응용)

  • Park, K.H.;Kim, H.W.;Kim, H.D.;Koh, M.S.;Ryu, J.D.;Kim, Y.E.;Lee, B.S.;Park, H.T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.62-67
    • /
    • 2001
  • Green technology is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied $CO_2$ technology into nuclear industry. 1) Nuclear laundry : A laundry machine that uses liquid and supercritical $CO_2$ as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All $CO_2$ used in cleaning is fully recovered and reused in next cleaning, resulting in no production of secondary nuclear waste. Decontamination factor is still lower than that in the methods currently used in the plant. Nuclear laundry using $CO_2$ looks promising with technical improvements-surfactants and mechanical agitation. 2) $CO_2$ nozzle decontamination : An adjustable nozzle for controlling the size of dry ice snow was developed. Using the developed nozzle, a surface decontamination device was made. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution.

  • PDF