• Title/Summary/Keyword: nuclear power engineering

Search Result 3,911, Processing Time 0.032 seconds

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids (3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1027-1033
    • /
    • 2010
  • A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.

Signal Analysis of Eddy Current Array Probe According to Size Variation of FBH Defects (배열 와전류 프로브의 FBH 결함 크기 변화에 따른 신호 해석)

  • Kim, Ji-Ho;Lim, Geon-Gyu;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.137-144
    • /
    • 2009
  • In this paper, the signal analysis of eddy current array probe was performed to analyze the electromagnetic characteristics with the variation of FBH(flat bottomed hole) defects size on steam generator tube in NPP(nuclear power plants) using the electromagnetic finite element method. To obtain the electromagnetic characteristic of probes, the governing equation was derived from Maxwell's equations, and the individual problem was analyzed by using the 3-dimensional finite element method. For the simulation FBH defects were used. The depth of FBH defects were 20%, 40%, 60%, 80% and 100% of steam generator(SG) tube thickness, and it was assumed that the defects were located on the tube outside. And the operation frequencies of 100 kHz, 300 kHz and 400 kHz were used. Material of specimen was Inconel 600 which is usually used for SG tubes in NPP. The signal difference could be observed according to the size variation of depth of FBH defects and operation frequencies. The results in this paper can be helpful when the ECT(eddy current testing) signals from EC array probe are evaluated and analyzed.

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

The Ages of Fault Activities of the Ilgwang Fault in Southeastern Korea, Inferred by Classification of Geomorphic Surfaces and Trench Survery (지형면 분류 및 트렌치 조사에 의한 일광단층의 단층활동시기 추정)

  • Jang, Ho;Lee, Jin-Han;An, Yun-Seong;Joo, Byeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.21-30
    • /
    • 2004
  • The Ilgwang Fault is NNE-striking, elongated 40 Km between Ulsan and Haeundae-ku, Busan in southeastern part of the Korean Peninsula. This paper si mainly concerned about the ages of the fault activities especially in the Quaternary, inferred from classification of geomorphic surfaces and trench excavation for the construction of Singori nuclear power plant. The geomorphic surfaces are classified into Beach and the Alluvial plain, the 10 m a.s.l. Marine terrace(MIS 5a), the 20 m a.s.l. Marine terrace(MIS 5e), the Reworked surface of 45 m a.s.l. Marine terrace(MIS 7 or 9) and the Low relief erosional surface. The Low relief erosional surface is distributed coastal side, the Reworked surface of 45m a.s.l. Marine terrace inland side by the Ilgwang Fault Line as the boundary line. But the former is above 10 m higher in relative height than the latter. The 20 m a.s.l. Marine terrace on the elongation line of the Ilgwang Fault reveals no dislocation. A site was trenched on the straight contact line with $N30^{\circ}E$-striking between the 10 m a.s.l. Marine terrace and the 20 m a.s.l. Marine terrace. Fault line or dislocation was not observable in the trench excavation. Accordingly, the straight contact line is inferred as the ancient shore line of the 10 m a.s.l. Marine terrace. The Ages of the Fault activities are inferred after the formation of the Ichonri formation - before the formation of the 45 m a.s.l. Marine terrace(220 Ka. y. B.P. or 320. Ka. y. B.P.). The Low relief erosional surface was an island above the sea-level during the formation of the 45 m a.s.l. marine terrace in the paleogeography.

  • PDF

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

A Study on the Direct Discharge Test for Verifying Design Concentration and Soaking Time for CO2 Fire Extinguishing System of Total Flooding (전역방출방식 CO2 소화설비의 설계농도 및 유지시간 검증을 위한 직접방사실험에 관한 연구)

  • Lee, Se-Myeoung;Moon, Sung-Woong;Ryu, Sang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.15-23
    • /
    • 2012
  • Indirect Test Method is often used instead of direct test method in test method for extinguishing performance of $CO_2$ extinguishing facility because of high cost, environment problems and difficulties of procedure. But in the danger facilities for a unit of nation, such as a petrochemical plant, a nuclear power plant, or etc. is better to verify the performance of the extinguishment through direct discharge test. In $CO_2$ extinguishing system for total flooding system installed in dangerous facilities in Korea, each protected area in surface fire and deep-seated fire had selected and verified of extinguishing performance of $CO_2$ extinguishing facilities. To get recognized as extinguishing performance, discharged $CO_2$ concentration to protected area should be equivalence with design concentration standards (NFSC and NFPA). The Design Concentration means that $CO_2$ extinguishing agent is considerate of concentration for percentage of allowance (20 %) from extinguishing concentration which available to control of flame. As test result, surface fire and deep seated fire in protected area is obtained $CO_2$ design concentration and maintained design concentration more than 20 minutes as deep-seated fire. Through this study, we introduced direct discharging test method and decision method. And furthermore, especially in the dangerous facilities as a unit of Nation, we suggested necessity about reliability of extinguishing facilities to use direct test method.

The Development of Steel-plate Concrete Panels with Preplaced Lightweight Aggregates Concrete (프리플레이스트 경량골재 콘크리트를 사용한 합성형 구조모듈 제작 및 성능 평가)

  • Yoon, Jin Young;Kim, Jae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • The steel-plate concrete(SC) is used in a form of module assembly construction in the outer wall of nuclear-power plant and LNG containment. Since the steel-plate concrete modules are generally manufactured from the plant, the weight of SC has significantly effect on the total construction cost in the aspect of shipment. Therefore, the use of lightweight aggregates concrete(LWAC), which fill the inside of SC module can be a solution. However, the amount of used lightweight aggregates(LWA) is limited in the use of current concrete mixing process due to the concrete quality problems and it also determines the allowable minimum density of LWAC. In this research, the preplaced casting method is applied because of increasing the volume fraction of LWA significantly, which results from the producing process of pre-packing the LWA in the formwork and filling the interstitial voids between LWA using cement paste grout. The density and compressive strength of selected preplaced LWAC were $1,600kg/m^3$ and 30MPa and it was applied for the mock-up specimens of SC panel. It was used for the 3-point bending test for evaluating its structural performance. The results show that the preplaced LWAC can reduce the density of concrete with the adequate mechanical and structural performance.

Release of Heavy Metals into Water from the Resuspension of Coastal Sediment (연안 오염퇴적물의 재부상에 의한 중금속의 수계용출특성)

  • Song, Young-Chae;Subha, Bakthavachallam;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.469-475
    • /
    • 2014
  • The study investigated the physicochemical characteristics and the ecological risk of the Northport sediment in B city and the releasing properties of heavy metals into seawater during the resuspension also studied. The major components of the sediment are fine silt and clay which contains high organic matter and AVS (Acid volatile sulfide) and the ecological risk of the heavy metals in sediment also very high. The release rate of heavy metals into seawater was in order of Pb>>Cu>Cr>>Zn>Cd during the resuspension in a batch experiment, and the heavy metal release mainly attributed to the oxidation of metal sulfides. Heavy metals which came from easily oxidisable metal sulfides rapidly contaminated seawater within about 1.0 h of the sediment resuspension. The sulfide oxidation during the resuspension increased the residual fraction of heavy metals in the sediment, decreased the organic bound fraction, and changed the other fractions of heavy metals in the sediment. The release of heavy metals from the sediment during resuspension was affected by the resuspension time, the oxidation rate of metal sulfides and resuspended concentration of the sediment particle.