DOI QR코드

DOI QR Code

Release of Heavy Metals into Water from the Resuspension of Coastal Sediment

연안 오염퇴적물의 재부상에 의한 중금속의 수계용출특성

  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Subha, Bakthavachallam (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Woo, Jung-Hui (Nuclear Power Equipment Research Center, Korea Maritime and Oean University)
  • 송영채 (한국해양대학교 환경공학과) ;
  • 수바 (한국해양대학교 환경공학과) ;
  • 우정희 (한국해양대학교 원전기자재연구센터)
  • Received : 2014.06.02
  • Accepted : 2014.07.14
  • Published : 2014.07.31

Abstract

The study investigated the physicochemical characteristics and the ecological risk of the Northport sediment in B city and the releasing properties of heavy metals into seawater during the resuspension also studied. The major components of the sediment are fine silt and clay which contains high organic matter and AVS (Acid volatile sulfide) and the ecological risk of the heavy metals in sediment also very high. The release rate of heavy metals into seawater was in order of Pb>>Cu>Cr>>Zn>Cd during the resuspension in a batch experiment, and the heavy metal release mainly attributed to the oxidation of metal sulfides. Heavy metals which came from easily oxidisable metal sulfides rapidly contaminated seawater within about 1.0 h of the sediment resuspension. The sulfide oxidation during the resuspension increased the residual fraction of heavy metals in the sediment, decreased the organic bound fraction, and changed the other fractions of heavy metals in the sediment. The release of heavy metals from the sediment during resuspension was affected by the resuspension time, the oxidation rate of metal sulfides and resuspended concentration of the sediment particle.

본 연구는 B광역시 북항을 대상으로 해양 퇴적물의 물리화학적 특성과 오염도를 평가하고, 해양 퇴적물의 재부상 시중금속의 용출특성 및 생태적 위험성을 평가하였다. 북항 퇴적물의 주요 구성성분은 미세 실트질 및 점토질이었으며, 유기물질과 산휘발성 황화물이 높게 포함되어 퇴적물 내 함유된 중금속으로 인한 생태적 위험도가 높은 것으로 평가되었다. 회분식 실험결과, 퇴적물의 재부상으로 인한 중금속 용출속도는 납>>구리>크롬>>아연>카드뮴 순이었으며, 중금속 용출은 금속 황화물의 산화반응에 기인하는 것으로 평가되었다. 중금속은 퇴적물의 재부상 약 1시간 내에 급격히 용출되었으며, 재부상에 의한 황화물의 산화는 퇴적물에 존재하는 중금속의 광물내 잔류분율을 증가시키고, 유기물과 결합된 중금속의 분율을 감소시킬 뿐만 아니라 퇴적물에 함유된 중금속의 다른 결합분율의 변화에 영향을 미쳤다. 퇴적물의 재부상에 의하여 해수로 용출되는 중금속의 용출량은 재부상 시간, 금속 황화물의 산화속도와 재부상하는 퇴적물의 농도에 영향을 받았다.

Keywords

References

  1. Je, C. H., Hayes, D. F. and Kim, K. S., "Simulation of resuspended sediments resulting from dredging operations by a numerical flocculent transport model," Chemosphere, 70 (2), 187-195(2007). https://doi.org/10.1016/j.chemosphere.2007.06.033
  2. Simpson, S. L., Apte, S. C., Hortle, K. G. and Richards, D. G., "An evaluation of copper remobilization from mine tailings in sulfidic environments," J. Geochem. Explorat., 63(3), 203-215(1998). https://doi.org/10.1016/S0375-6742(98)00061-2
  3. Atkinson, C. A., Jolley, D. F. and Simpson, S. L., "Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments," Chemosphere, 69(9), 1428-1437(2007). https://doi.org/10.1016/j.chemosphere.2007.04.068
  4. Fichet, D., Radenac, G. and Miramand, P., "Experimental Studies of Impacts of Harbour Sediments Resuspension to Marine Invertebrates Larvae: Bioavailability of Cd, Cu, Pb and Zn and Toxicity," Mar. Pollut. Bullet., 36(7-12), 509- 518(1998). https://doi.org/10.1016/S0025-326X(97)00190-2
  5. Kiratli, N. and Ergin, M., "Partitioning of heavy metals in surface Black Sea sediments," Appl. Geocheraistry, 11(6), 775-788(1996). https://doi.org/10.1016/S0883-2927(96)00037-6
  6. Cantwell, M. G. and Burgess, R. M., "Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator," Chemosphere, 56(1), 51-58 (2004). https://doi.org/10.1016/j.chemosphere.2004.01.033
  7. Eggleton, J. and Thomas, K. V., "A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events," Environ. Int., 30(7), 973-980 (2004). https://doi.org/10.1016/j.envint.2004.03.001
  8. Zhu, W. H., Huang, T. L., Chai, B. B., Yang, P. and Yao, J. L., " Influence of the environmental conditions on the fractionation of heavy metals in the Fenhe reservoir sediment," Geochem. J., 44(5), 399-410(2010). https://doi.org/10.2343/geochemj.1.0082
  9. Guo, T., Delaune, R. D. and Patrick JR, W. H., "The Effect of Sediment Redox Chemistry on Solubility/Chemically Active Forms of Selected Metals in Bottom Sediment Receiving Produced Water Discharge," Spill Sci. Technol. Bullet., 4(3), 165-175(1997). https://doi.org/10.1016/S1353-2561(98)00013-9
  10. Dabrin, A., Schafer, J., Bertrand, O., Masson, M. and Blanc, G., "Origin of suspended matter and sediment inferred from the residual metal fraction," Application to the Marennes Oleron Bay, France, Continental Shelf Res., 72(1), 119-130(2014).
  11. Saulnier, I. and Mucci, A., "Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada," Appl. Geochem., 15(2), 191-210(2000). https://doi.org/10.1016/S0883-2927(99)00034-7
  12. Gao, X., Li, P. and Chen, C. T. A., "Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results," Mar. Pollut. Bullet., 72(1), 281-288(2013). https://doi.org/10.1016/j.marpolbul.2013.02.007
  13. Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z. and Liu, B., "Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China," J. Environ. Sci., 22(1), 23-31(2010). https://doi.org/10.1016/S1001-0742(09)60070-X
  14. Song, Y. C., Sivakumar, S., Nguyen, T. T., Kim, S. H. and Kim, B. G., "The immobilization of heavy metals in biosolids using phosphate amendments-Comparison of EPA (6010 and 3051) and selective sequential extraction methods," J. Hazard. Mater., 167(1-3), 1033-1037(2009). https://doi.org/10.1016/j.jhazmat.2009.01.089
  15. Matsui, T., Kojima, H. and Fukui, M., "Effects of temperature on anaerobic decomposition of high-molecular weight organic matter under sulfate-reducing conditions," Estuarine, Coastal Shelf Sci., 119, 139-144(2013). https://doi.org/10.1016/j.ecss.2013.01.003
  16. Kim, D. H. and Um, H. H., "Estimation of the Sediment Pollution in Coast of Gwangyang, Mokpo and Shinan, Korea," J. Kor. Soc. Mar. Environ. Saf., 19(4), 303-308(2013). https://doi.org/10.7837/kosomes.2013.19.4.303
  17. Choi, B. R. and Lee, T. Y., "Evaluation of organic compounds and heavy metals in sediments from the Busan harbor," J. Kor. Soc. Waste Manage., 28(3), 269-274(2011).
  18. Luo, W., Lu, Y., Wang, T., Hu, W., Jiao, W., Naile, J. E., Khim, J. S. and Giesy, J. P., "Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas," China, AMBIO, 39(5-6), 367-375 (2010). https://doi.org/10.1007/s13280-010-0077-5
  19. Lu, A., Zhang, S. and Shan, X. Q., "Time effect on the fractionation of heavy metals in soils," Geoderma, 125(3-4), 225- 234(2005). https://doi.org/10.1016/j.geoderma.2004.08.002
  20. Simpson, S. L., Ward, D., Strom, D. and Jolley, D. F., "Oxidation of acid-volatile sulfide in surface sediments increases the release and toxicity of copper to the benthic amphipod Melita plumulosa," Chemosphere, 88(8), 953-961(2012). https://doi.org/10.1016/j.chemosphere.2012.03.026
  21. Vanthuyne, M. and Maes, A., "Metal speciation in sulphidic sediments: A new method based on oxidation kinetics modelling in the presence of EDTA," Sci. Total Environ., 367(1), 405-417(2006). https://doi.org/10.1016/j.scitotenv.2006.03.037

Cited by

  1. Effect of the Applied Biostimulant Depth on the Bioremediation of Contaminated Coastal Sediment vol.39, pp.4, 2015, https://doi.org/10.5394/KINPR.2015.39.4.345
  2. Applicability of Natural Zeolite with Different Cation Exchange Capacity as In-situ Capping Materials for Adsorbing Heavy Metals vol.39, pp.2, 2017, https://doi.org/10.4491/KSEE.2017.39.2.51