DOI QR코드

DOI QR Code

The Development of Steel-plate Concrete Panels with Preplaced Lightweight Aggregates Concrete

프리플레이스트 경량골재 콘크리트를 사용한 합성형 구조모듈 제작 및 성능 평가

  • Yoon, Jin Young (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Jae Hong (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 윤진영 (울산과학기술원 도시환경공학부) ;
  • 김재홍 (울산과학기술원 도시환경공학부)
  • Received : 2017.02.16
  • Accepted : 2017.03.16
  • Published : 2017.03.30

Abstract

The steel-plate concrete(SC) is used in a form of module assembly construction in the outer wall of nuclear-power plant and LNG containment. Since the steel-plate concrete modules are generally manufactured from the plant, the weight of SC has significantly effect on the total construction cost in the aspect of shipment. Therefore, the use of lightweight aggregates concrete(LWAC), which fill the inside of SC module can be a solution. However, the amount of used lightweight aggregates(LWA) is limited in the use of current concrete mixing process due to the concrete quality problems and it also determines the allowable minimum density of LWAC. In this research, the preplaced casting method is applied because of increasing the volume fraction of LWA significantly, which results from the producing process of pre-packing the LWA in the formwork and filling the interstitial voids between LWA using cement paste grout. The density and compressive strength of selected preplaced LWAC were $1,600kg/m^3$ and 30MPa and it was applied for the mock-up specimens of SC panel. It was used for the 3-point bending test for evaluating its structural performance. The results show that the preplaced LWAC can reduce the density of concrete with the adequate mechanical and structural performance.

최근 원자력 발전소 및 LNG 탱크의 외벽을 제작하는데 있어 강판 콘크리트(steel-plate concrete, SC)와 같은 합성형 구조모듈(steel-plate concrete panel, SCP)의 사용이 증가하고 있다. SCP는 공장에서 생산 한 후 이송되므로, 이송에 드는 비용을 줄이기 위해 경량화가 필수적이다. 이때 경량골재 콘크리트를 사용해 SCP의 내부를 채워 밀도를 낮출 수 있지만, 현재 콘크리트 배합법은 콘크리트의 품질을 확보하기 위해 경량골재의 사용량이 제한되어 경량화에 한계가 있다. 본 연구에서 제안하는 프리플레이스트 경량 콘크리트 배합법은 거푸집 내 경량골재를 먼저 채운 후(pre-packing) 그라우트를 주입하는 공법으로, 콘크리트의 품질확보 및 밀도를 낮출 수 있다. 다양한 종류의 경량골재 및 그라우트 배합을 사용해 실험을 수행하였고, 밀도 $1,600kg/m^3$, 압축강도 30MPa급 프리플레이스트 경량 콘크리트 배합비를 선정하여 SCP 시편을 제작하였다. 제작된 SCP 시편의 구조성능 시험을 위해 3점 휨 실험을 수행하였다. 고유동 콘크리트를 사용해 SCP의 내부를 채운 시편과 비교해 프리플레이스트 경량 콘크리트를 사용해 제작된 SCP 시편은 비슷한 수준의 휨 저항 성능을 보였으며 밀도가 30% 이상 낮았다. 따라서 프리플레이스트 경량 콘크리트를 사용해한 SCP 제작 시, 기존의 SCP와 비슷한 수준의 구조성능을 가지며 밀도를 낮춰 이송 비용을 감축할 수 있을 것으로 기대된다.

Keywords

References

  1. Bogas, J.A., Gomes, A., Gomes, M.G. (2012). Estimation of water absorbed by expanding clay aggregates during structural lightweight concrete production. Materials and Structures, 45, 1565-1576. https://doi.org/10.1617/s11527-012-9857-7
  2. Kanadasan, J., Razak, H.A. (2014). Mix design for self-compacting palm oil clinker concrete based on particle packing. Materials and Design, 56, 9-19. https://doi.org/10.1016/j.matdes.2013.10.086
  3. Kim, J.H., Lee, H.W., Lee, J.B., Kwak, S.S., Noh, S.H. (2008). Development of SC Structure and Modularization Technique for Nuclear Power Plant, Technical Report, S05NJ08-C2008-00, Korea Hydro & Nuclear Power Co., Ltd [in Korean].
  4. Kim, M. S., Jang, H. S., Kim, C. H., Baek, D. I. (2011). A study of the basic properties of lightweight aggregate concrete for offshore structures application, Journal of Ocean Engineering and Technology, 25(1), 73-79 [In Korean]. https://doi.org/10.5574/KSOE.2011.25.1.073
  5. Kim, Y.J., Choi, Y.W., Lachemi, M. (2010). Characteristics of self-consolidating concrete using two types of lightweight coarse aggregates, Construction and Building Materials, 24, 11-16. https://doi.org/10.1016/j.conbuildmat.2009.08.004
  6. Kim, Y.T., Jang C.S. (2011). Production Technology, Property and Application of Artificial Lightweight Aggregates, Magazine of the Korea Concrete Institute, 23(5), 14-17 [In Korean]. https://doi.org/10.22636/MKCI.2011.23.5.14
  7. Lo, T.Y., Cui, H.Z. (2004). Effect of porous lightweight aggregate on strength of concrete. Materials Letter, 58, 916-919. https://doi.org/10.1016/j.matlet.2003.07.036
  8. Malley, J. O'., Abdelgader, H. (2010). Investigation into viability of using two-stage(pre-placed aggregate) concrete in Irish setting, Front of Architecture and Civil Engineering in China, 4, 127-132. https://doi.org/10.1007/s11709-010-0007-4
  9. Najjar, M.F., Soliman, A.M., Nehdi, M.L. (2014). Critical overview of two-stage concrete: properties and applications, Construction and Building Materials, 62, 47-58. https://doi.org/10.1016/j.conbuildmat.2014.03.021
  10. Nguyen, L.H., Beaucour, A.L., Ortola, S., Noumowe, A. (2014). Influence of the volume fraction and the nature of fine lightweight aggregates on the thermal and mechanical properties of structural concrete, Construction and Building Materials, 51, 121-132. https://doi.org/10.1016/j.conbuildmat.2013.11.019
  11. Park, D.O., Sa, S.H., Kim, S.H., Ji, S.W., Choi, S.K., Seo, C.H. (2009). A study on the properties of lightweight aggregate concrete according to the pore structure and water absorption characteristics of lightweight aggregate, Journal of the Architectural Institute of Korea Structure & Construction, 25(3), 85-92 [In Korean].
  12. Schwartzentruber, L.D., Le Roy, R., Cordin, J. (2006). Rheological behaviour of fresh cement pastes formulated from a self compacting concrete(SCC), Cement and Concrete Research, 36, 1203-1213. https://doi.org/10.1016/j.cemconres.2004.10.036
  13. Sim, J.I., Yang, K.H. (2010). Air content, workability and bleeding characteristics of fresh lightweight aggregate concrete, Journal of the Korea Concrete Institute, 22(4), 559-566 [In Korean]. https://doi.org/10.4334/JKCI.2010.22.4.559
  14. Yim, S.J., Lee, B.S., Bang, C.J. (2013). Experimental study of mock-up for modular of high-strength reinforcing bars to the nuclear power plant structures, Journal of Architectural Institute of Korea, 33(2), 615-616 [In Korean].
  15. Yoon, J.Y., Kim, J.H., Hwang, Y.Y., Shin, D.K. (2015). Lightweight concrete produced using a two-stage casting process, Materials, 8, 1384-1397. https://doi.org/10.3390/ma8041384