• Title/Summary/Keyword: nuclear factor-activated T cell

Search Result 66, Processing Time 0.032 seconds

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

Inhibitory Effects of Yongbu-tang on Osteoclast Differentiation and Bone Resorption (용부탕의 파골세포 분화 억제와 골 흡수 억제효과)

  • Lee, Jeong Ju;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.27-40
    • /
    • 2015
  • Objectives : This study was performed to evaluate the effects of water extract of Cervi Parvum Cornu(CPC), Aconiti Lateralis Radix Preparata(ALR), and Yongbu-tang(YBT) on suppression of the receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation and bone resorption. Methods : The effects of CPC, ALR, YBT extracts on osteoclast differentiation were determined by culture of bone marrow macrophage(BMM). The mRNA expression levels of the nuclear factor of activated T-cells cytoplasmic 1(NFATc1), c-Fos and tartrate-resistant acid phosphatase(TRAP) in BMMs were analyzed by reverse transcriptase polymerase chain reaction(RT-PCR). Similarly, the protein expression levels of NFATc1, c-Fos, mitogen-activated protein kinase(MAPK)s and ${\beta}$-actin in cell lysates were measured by western blotting. In addition, effects of CPC, ALR and YBT extracts were determined by means of Lipopolysaccharide(LPS)-induced bone-loss with mice. Results : CPC, ALR and YBT extracts showed remarkable inhibition on RANKL-induced osteoclast differentiation without cytotoxicity. CPC and ALR extracts significantly reduced the protein expression level of NFATc1. YBT extract significantly reduced the mRNA expression levels of c-Fos, NFATc1 and the protein expression levels of c-Fos, NFATc1, AKT, p38, c-Jun N-terminal kinase(JNK). Further, YBT extract suppressed degradation of$ I-{\kappa}B$. And ALR extract significantly restored the bone erosion by LPS treatment in mice. Conclusions : YBT extract showed more remarkable inhibition on osteoclast differentiation than CPC and ALR extracts in vitro. ALR extract showed remarkable inhibition on bone resorption in vivo. Thus, YBT extract can be a useful treatment for bone-loss diseases such as osteoporosis.

p38 MAPK and $NF-_{\kappa}B$ are Required for LPS-Induced RANTES Production in Immortalized Murine Microglia (BV-2)

  • Jang, Sae-Byeol;Lee, Kweon-Haeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.339-346
    • /
    • 2000
  • Using murine immortalized microglial cells (BV-2), we examined the regulation of RANTES production stimulated by lipopolysaccharide (LPS), focusing on the role of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B.$ The result showed that RANTES (regulated upon activation of normal T cell expressed and secreted) was induced at the mRNA and protein levels in a dose- and time-dependent manner in response to LPS. From investigations of second messenger pathways involved in regulating the secretion of RANTES, we found that LPS induced phosphorylation of extracellular signal-regulated kinase (Erk), p38 MAPK and c-Jun-N-terminal kinase (JNK), and activated $(NF)-{\kappa}B.$ To determine whether this MAPK phosphorylation is involved in LPS-stimulated RANTES production, we used specific inhibitors for p38 MAPK and Erk, SB 203580 and PD 98059, respectively. LPS-induced RANTES production was reduced approximately 80% at $25\;{\mu}M$ of SB 203580 treatment. But PD 98059 did not affect RANTES production. Pyrrolidine-dithiocarbamate (PDTC), $(NF)-{\kappa}B$ inhibitor, reduced RANTES secretion. These results suggest that LPS-induced RANTES production in microglial cells (BV-2) is mainly mediated by the coordination of p38 MAPK and $(NF)-{\kappa}B$ cascade.

  • PDF

The Effects of Liriopis Tuber Water Extract on Innate Immune Activation and Anti-Inflammation (맥문동 물 추출물의 선천면역 활성과 염증억제 효과)

  • Kang, Nu-Ri;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Jang, Jun-Bock
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.15-28
    • /
    • 2021
  • Objectives: This study was designed to examine the anti-cancer activity by innate immunomodulating and anti-inflammatory effects of liriopis tuber water extract (LPE). Methods: Cell cytotoxicity was tested with 4T1 mouse mammary carcinoma cells, spleen cells, macrophage, and RAW264.7 cells. To investigate innate immunomodulating effects of LPE on macrophage, we measured tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). To investigate innate immunomodulating effects of LPE on RAW264.7 cell, we measured TNF-α, interleukin-6 (IL-6). In addition, TNF-α and nitric oxide (NO) induced by lipopolysaccharide (LPS) were measured after treating with LPE to observe innate immunomodulating effect of LPE on RAW264.7 cell. Also, mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) were examined by western blot analysis. Results: In an in vitro cytotoxicity analysis, LPE affected tumor cell growth above specific concentration. As compared with the control group, the production of TNF-α, IL-12, and IL-10 were increased in macrophage. As compared with the control group, the production of TNF-α and IL-6 were increased in RAW 264.7 cell. The expression of TNF-α and NO induced by LPS after treating LPE was decreased. In addition, treatment of RAW 264.7 cell with LPE increased the phosphorylation levels of p-extracellular signal-regulated kinase (p-ERK), p-Jun N-terminal kinase (p-JNK), and p-p38. Conclusions: LPE might have impact on the anti-cancer effect by activation of innate immune system and inflammation control.

Inhibitory Effects of Water Extracts of Eucommiae Cortex and Psoraleae Semen Alone and in Combination on Osteoclast Differentiation and Bone

  • Park, Jin Soo;Park, Ga Young;Choi, Han Gyul;Kim, Seong Joung;Kim, June Hyun;park, Min Cheol;Kim, Yun Kyung;Han, Sang Yong;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.34 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate the effects of water extracts of Eucommiae cortex (EC), Psoraleae semen (PS), and their combination on receptor activator of nuclear factor-kappa-B ligand (RANKL)-induced osteoclast differentiation. Methods : We assayed the protein expression levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-Fos, mitogen-activated protein kinases (MAPKs), and ${\beta}-actin$ in cell lysates using western blotting. Similarly, mRNA expression levels of NFATc1, c-Fos, tartrateresistant acid phosphate (TRAP), and glyceraldehyde-3-phosphate dehydrogenase, spermatogeni (GAPDHS) from bone marrow macrophages (BMMs) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we determined the anti-osteoporotic effects of the water extracts of EC, PS, and their combination in a lipopolysaccharide (LPS)-induced bone-loss mouse model. Results : The in vitro data revealed showed that the combination of EC and PS extract showed a more remarkable inhibition of osteoclast differentiation than each herb did alone. The combination downregulated the induction of c-Fos, NFATc1, and TRAP by suppressing the phosphorylation of p38 and c-Jun N-terminal kinases (JNKs) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). Lastly, the in vivo data showed that PS reduced the LPS-induced bone erosion. Conclusion : The result of this study suggests that EC and PS could be potential therapeutic agents for bone loss diseases such as osteoporosis.

Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells (RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

Innate Immunity Activation and Anti-Inflammation Effects of Evodia Rutaecarpine Water Extract (오수유 물 추출물의 선천 면역 활성과 염증 억제 효과)

  • Jeong, So-Mi;Lee, Jin-Moo;Lee, Chang-Hoon;Hwang, Deok-Sang;Jang, Jun-Bock
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • Objectives: This study was designed to examine immuno-modulatory effects of Evodia Rutaecarpine by activating innate immune system and inhibiting inflammation. Methods: First, Cell cytotoxicity was examined with 4T1 breast carcinoma and TG-induced macrophage. To investigate activating innate immune system of Evodiamine Rutacarpine Extract (ERE) on macrophage, we tested tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12), and interleukin-6 (IL-6). In addition, TNF-α and nitric oxide (NO) induced by lipopolysaccharide (LPS) were measured after treating with ERE to observe innate immune modulating effect of ERE on RAW 264.7 cell. Also, mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) were examined by western blot analysis. Results: In cytotoxicity analysis, ERE significantly affected tumor cell growth above specific concentration. Also, ERE significantly affected macrophage growth above specific concetration. As compared with the control group, the production of TNF-α, IL-12 and IL-6 were increased in TG-induced macrophage. As compared with the control group, TNF-α and IL-6 were significantly up-regulated in RAW 264.7 cell. The expression of TNF-α and NO induced by LPS after treating ERE was significantly decreased compared with control group. In addition, We observed ERE inhibited the phosphorylation levels of p-extracellular signal-regulated kinase (p-ERK), p-Jun N-terminal kinase (p-JNK), and p-p38 in western blotting by treating ERE on RAW 264.7 cell. Conclusions: ERE seems to have considerable impact on the anti-cancer effect by activation of innate immune system and inflammation control.

Study of Immunosuppressive Activity and Insulin Secretion by Treated Sanguisorba Officinalis (면역억제능을 보유한 지유(地楡)의 인슐린 분비능 연구)

  • Hwang, Seock Yeon;Kim, Myung Hyun;Kang, Jung Soo;Kim, Byoung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.5
    • /
    • pp.499-505
    • /
    • 2014
  • Immunosuppressors cyclosporine A(CsA) and tacrolimus(FK506), the primary cellular target of which is calcineurin/nuclear factor of activated T cells(NFAT) signalling pathways, decrease beta-cell insulin content and mRNA expression. The posttransplantation diabetes mellitus(PTDM) is a frequent complication in immunosuppressive therapy. The present study was to examine the effect of a crude water extracts of medicinal herbs such as Sanguisorba officinalis(SOE) on the immunosuppressive activity with lymphocyte and insulin secretion in insulinoma cell lines with RIN-5mF. It was found that SOE treatment had effect of immunosuppressor on lymphocytes and also significantly increased insulin secretion in RIN-5mF compared to other agents. we might suggest a mechanism on insulin secretion by HNF4a. Taken together, the present study suggested that SOE might serve as immunosuppressive drug in PTDM.

Carboxypeptidase E Is a Novel Modulator of RANKL-Induced Osteoclast Differentiation

  • Kim, Hyun-Ju;Hong, JungMin;Yoon, Hye-Jin;Yoon, Young-Ran;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.685-690
    • /
    • 2014
  • Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.

Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation

  • Laxmi Sen Thakuri;Chul Min Park;Jin Woo Park;Hyeon-A Kim;Dong Young Rhyu
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210℃). The total phenolic content of GCSW extract at 210℃ (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.