• Title/Summary/Keyword: nuclear factor E2-related factor 2 (Nrf2)

Search Result 73, Processing Time 0.056 seconds

Regulatory Roles of Chrysanthemum zawadskii Roots in Nuclear Factor E2-related Factor 2/Antioxidant Response Element Pathway

  • Kang, Hye-Sook;Park, Min-Ji;Jin, Kyong-Suk;Kim, Young-Hun;Jun, Mi-Ra;Lim, Ho-Jin;Jo, Wan-Kuen;Kim, Jong-Sang;Jeong, Woo-Sik
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.367-372
    • /
    • 2008
  • Cellular protection against carcinogens could be achieved by the induction of phase 2 detoxifying and antioxidant enzymes such as glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Nuclear transcription factor E2-related factor 2 (Nrf2) binds to antioxidant response element (ARE) in the promoter region of these genes and the resulting transactivation occurs. In the present study the effect of gujeolcho (Chrysanthemum zawadskii) roots on the Nrf2-ARE pathway were investigated. C. zawadskii root extract was fractionated with a series of organic solvents and their ability to induce Nrf2-ARE pathway was examined. We separated the most potent dichloromethane (DCM) fraction into 12 sub-fractions and found several sub-fractions with strong effects on the Nrf2-ARE pathway. Fraction 4 strongly induced the ARE-reporter gene activity as well as Nrf2 expression. Sitosterol was isolated as a major compound in fraction 4 although its activity was not as potent as its mother fraction. These results indicate that C. zawadskii roots might be used as a potential natural chemopreventive source.

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

Phosphatidylinositol 3-Kinase Regulates Nuclear Translocation of NF-E2-Related Factor 2 through Actin Rearrangement in Response to Oxidative Stress

  • Kang, Keon-Wook;Lee, Seung-Jin;Park, Jeong-Weon;Kim, Sang-Geon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.241.3-242
    • /
    • 2002
  • Expression of phase II detoxifying genes is regulated by NF-E2-related factor 2 (Nrf2)-mediated antioxidant response element (ARE) activation. Phosphatidylinositol 3-kinase (PI3-kinase) plays an essential role in ARE-mediated rGSTA2 induction by oxidative stress and controls microfilaments and translocation of actin-associated proteins. This study was designed to investigate the P13-kinase-mediated nuclear translocation of Nrf2 and the interaction of Nrf2 with actin. (omitted)

  • PDF

Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance

  • Kang, Kyoung Ah;Hyun, Jin Won
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy.

Ethyl Acetate Fraction from Petasites japonicus Attenuates Oxidative Stress through Regulation of Nuclear Factor E2-Related Factor-2 Signal Pathway in LLC-PK1 Cells (머위 에틸아세테이트 분획물의 LLC-PK1 세포에서의 Nrf-2 매개 항산화 효과)

  • Kim, Ji Hyun;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Antioxidant effects and nuclear factor E2-related factor-2 (Nrf-2) signal pathway of methanol extract and 4 fractions [n-hexane, methylene chloride, ethyl acetate (EtOAc), and n-butanol fractions] from Petasites japonicus were investigated. The EtOAc fraction showed highest polyphenol and flavonoid contents among other fractions. In addition, EtOAc fraction showed stronger scavenging activity against superoxide anion radical than other fractions. Furthermore, we investigated antioxidants effects of the EtOAc fraction under cellular system using $LLC-PK_1$ cells. The EtOAc fraction dose-dependently increased the antioxidant protein expressions of heme oxygenase 1 (HO-1) and thioredoxin reductase 1 (TrxR1) known to be involved in oxidative stress, through activation of Nrf-2. The treatment of EtOAc fraction ($100{\mu}g/mL$) led to the elevation of the high expression of Nrf-2-dependent factor such as HO-1 and TrxR1. These results indicated that the EtOAc fraction of P. japonicus showed high antioxidant activity by regulation of Nrf-2 signaling pathway.

Tribulus terrestris Suppresses the Lipopolysaccharide-Induced Inflammatory Reaction in RAW264.7 Macrophages through Heme Oxygenase-1 Expressions

  • Kim, Jai Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • The fruit of Tribulus terrestris L. (Zygophyllaceae) is an important source of traditional Korean and Chinese medicines. In this study, NNMBS223, consisting of the ethanol extract of T. terrestris, showed potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS223 in suppressing the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and production of iNOS-derived nitric oxide (NO), COX-2-derived prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated macrophages. In addition, NNMBS223 induced expression of heme oxygenase (HO)-1 through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. The effects of NNMBS223 on LPS-induced production of NO and PGE2 were partially reversed by the HO activity inhibitor tin protoporphyrin (SnPP). These findings suggest that Nrf2-dependent increases in expression of HO-1 induced by NNMBS223 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.

Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities

  • Jung, Byung-Jin;Yoo, Hwan-Sic;Shin, Sooyoung;Park, Young-Joon;Jeon, Sang-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.57-68
    • /
    • 2018
  • Nuclear factor E2-related factor 2 (NRF2) plays an important role in redox metabolism and antioxidant defense. Under normal conditions, NRF2 proteins are maintained at very low levels because of their ubiquitination and proteasomal degradation via binding to the kelch-like ECH associated protein 1 (KEAP1)-E3 ubiquitin ligase complex. However, oxidative and/or electrophilic stresses disrupt the KEAP1-NRF2 interaction, which leads to the accumulation and transactivation of NRF2. During recent decades, a growing body of evidence suggests that NRF2 is frequently activated in many types of cancer by multiple mechanisms, including the genetic mutations in the KEAP1-NRF2 pathway. This suggested that NRF2 inhibition is a promising strategy for cancer therapy. Recently, several NRF2 inhibitors have been reported with anti-tumor efficacy. Here, we review the mechanisms whereby NRF2 is dysregulated in cancer and its contribution to the tumor development and radiochemoresistance. In addition, among the NRF2 inhibitors reported so far, we summarize and discuss repurposed NRF2 inhibitors with their potential mechanisms and provide new insights to develop selective NRF2 inhibitors.

Anti-inflammatory Effect of Achyranthoside E Dimethyl Ester in LPS-stimulated RAW 264.7 Cells (LPS로 인한 RAW 264.7 세포의 염증반응에 미치는 achyranthoside E dimethyl ester의 효과)

  • Bang, Soo Young;Kim, Ji-Hee;Moon, Hyung-In;Kim, Young Hee
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.736-742
    • /
    • 2013
  • Achyranthoside E dimethyl ester (AEDE) is an oleanolic acid glycoside from Achyranthes japonica. In this study, we investigated the effects of AEDE on nitric oxide (NO) production and underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated macrophages. AEDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Further study demonstrated that AEDE induced heme oxygenase-1 (HO-1) gene expression. In addition, the inhibitory effects of AEDE on iNOS expression were abrogated by small interfering RNA-mediated knock-down of HO-1. Moreover, AEDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. AEDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) and extracellular signal regulated kinase (ERK1/2). AEDE phosphorylated Akt and ERK1/2 as well. Therefore, these results suggest that AEDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/ERK-Nrf2 signaling. These findings provide the scientific rationale for anti-inflammatory therapeutic use of AEDE.

Expression of Nuclear Factor Erythroid 2 Protein in Malignant Cutaneous Tumors

  • Choi, Chang Yong;Kim, Jin Young;Wee, Seo Yeong;Lee, Jang Hyun;Nam, Doo Hyun;Kim, Chul Han;Cho, Moon Kyun;Lee, Yoon Jin;Nam, Hae Seon;Lee, Sang Han;Ch, Sung Woo
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.654-660
    • /
    • 2014
  • Background Reactive oxygen species (ROS) damages cell molecules, and modifies cell signaling. The nuclear factor E2-related factor (Nrf2) is a critical transcription regulator, which protects cells against oxidative damage. Nrf2 expression is increased in a large number of cancers. However, little information has been reported regarding the expression of Nrf2 in skin cancers. Hence, we explored the expression of Nrf2 protein in skin cancers. Methods The Nrf2 protein expression in 24 specimens, including 6 malignant melanomas (MM), 6 squamous cell carcinomas (SCC), 6 basal cell carcinomas (BCC), and 6 normal skin tissues, was evaluated by western blotting. Immunohistochemical staining was performed. The expression of Kelch-like ECH-associated protein 1 (Keap1), the key regulator of Nrf2, was also analyzed by western blotting. Results Small interfering RNA transfection to the melanoma cell line G361 confirmed that an approximately 66 kDa band was the true Nrf2 band. The western blot revealed that the Nrf2 protein was definitely expressed in normal skin tissues, but the Nrf2 expression was decreased in MM, SCC, and BCC. Immunohistochemical examination showed that expression of Nrf2 was decreased in all skin cancer tissues compared to the normal skin tissues. Keap1 was not expressed in all malignant skin tumors and normal skin tissues by western blot. Conclusions ROS was increased in various types of cancers which proteins were highly expressed or underexpressed. This study demonstrated that the expression of Nrf2 protein was down-regulated in human malignant skin tumors. We suggest that decreased expression of Nrf2 is related to skin cancers.

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.