Browse > Article

Ethyl Acetate Fraction from Petasites japonicus Attenuates Oxidative Stress through Regulation of Nuclear Factor E2-Related Factor-2 Signal Pathway in LLC-PK1 Cells  

Kim, Ji Hyun (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
Lee, Jaemin (Department of Integrative Plant Science, Chung-Ang University)
Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University)
Cho, Eun Ju (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
Publication Information
Korean Journal of Pharmacognosy / v.47, no.1, 2016 , pp. 55-61 More about this Journal
Abstract
Antioxidant effects and nuclear factor E2-related factor-2 (Nrf-2) signal pathway of methanol extract and 4 fractions [n-hexane, methylene chloride, ethyl acetate (EtOAc), and n-butanol fractions] from Petasites japonicus were investigated. The EtOAc fraction showed highest polyphenol and flavonoid contents among other fractions. In addition, EtOAc fraction showed stronger scavenging activity against superoxide anion radical than other fractions. Furthermore, we investigated antioxidants effects of the EtOAc fraction under cellular system using $LLC-PK_1$ cells. The EtOAc fraction dose-dependently increased the antioxidant protein expressions of heme oxygenase 1 (HO-1) and thioredoxin reductase 1 (TrxR1) known to be involved in oxidative stress, through activation of Nrf-2. The treatment of EtOAc fraction ($100{\mu}g/mL$) led to the elevation of the high expression of Nrf-2-dependent factor such as HO-1 and TrxR1. These results indicated that the EtOAc fraction of P. japonicus showed high antioxidant activity by regulation of Nrf-2 signaling pathway.
Keywords
Petasites japonicus; Antioxidant; Heme oxygenase-1; Nrf-2;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lee, D. G., Lee, K. H., Park, K. W., Han, C. K., Ryu, B. Y. and Cho, E. J. (2015) Isolation and identification of flavonoids with aldose reductiase inhibitory activity from Petasites japonicus. Asian J. Chem. 27: 991-994.   DOI
2 Yaoita, Y. and Kikuchi, M. (1994) Petasiphenone, a phenolic compound from rhizomes of Petasites japonicus. Phytochemistry 37: 1773-1774.   DOI
3 Tori, M., Kawahara, M. and Sono, M. (1997) Novel epoxyeremophilanoids, eremopetasitenins A1, A2, B1, and B2, from Petasites japonicus. Tetrahedron Lett. 38: 1965-1968.   DOI
4 Nishikimi, N., Rao, N. A. and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygenin. Biochem. Biophys. Res. Commun. 46: 849-854.   DOI
5 Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.   DOI
6 Duval, B. and Shetty, K. (2001) The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J. Food Biochem. 25: 361-377.   DOI
7 Bravo, L. (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333.
8 Beecher, G. R. (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J. Nutr. 133: 3248S-3254S.   DOI
9 Balaban, R. S., Nemoto, S. and Finkel T. (2005) Mitochondria, oxidants, and aging. Cell 120: 483-495.   DOI
10 Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U S A 90: 7915-7922.   DOI
11 Satoh, T., Enokido, Y., Kubo, T., Yamada, M. and Hatanaka, H. (1998) Oxygen toxicity induces apoptosis in neuronal cells. Cell Mol. Neurobiol. 18: 649-666.   DOI
12 Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C. and Bohr, V. A. (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30: 2-10.
13 Ray, P. D., Huang, B. W. and Tsuji, Y. (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24: 981-990.   DOI
14 Gutfinger T. (1981) Polyphenols in olive oils. J. Am. Oil. Chem. Soc. 58: 966-967.   DOI
15 Lee, J. S., Yang, E. J., Yun, C. Y., Kim, D. H. and Kim, I. S. (2011) Suppressive effect of Petasites japonicus extract on ovalbumin-induced airway inflammation in an asthmatic mouse model. J. Ethnopharmacol. 133: 551-557.   DOI
16 Seo, H. S., Chung, B. H. and Cho, Y. G. (2008) The antioxidant and anticancer effects of butterbur (Petasites japonicus) extract. Korean J. Plant Res. 21: 265-269.
17 Choi, O. B. (2002) Anti-allergic effects of Petasites japonicum. J. Korean Soc. Food Sci. Nutr. 15: 382-385.
18 Moreno, M. I., Isla, M. I., Sampietro, A. R. and Vattuone, M. A. (2000) Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Enthropharmacol. 71: 109-114.   DOI
19 Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313-322.   DOI
20 Koriyama, Y., Nakayama, Y., Matsugo, S. and Kato, S. (2013) Protective effect of lipoic acid against oxidative stress is mediated by Keap1/Nrf2-dependent heme oxygenase-1 induction in the RGC-5 cellline. Brain Res. 1499: 145-157.   DOI
21 Cho, B. S., Lee, J. J., Ha, J. O. and Lee, M. Y. (2006) Physicochemical composition of Petasites japonicus S. et Z. Max. Korean J. Food Preserv. 13: 661-667.
22 Oh, S. H., Yang, Y. H., Kwon, O. Y. and Kim, M. R. (2006) Effects of diet with added butterbur (Petasites japonicus Maxim) on the plasma lipid profiles and antioxidant index of mice. J. East Asian Soc. Dietary Life 16: 399-407.
23 Kamat, J. P. (2006) Peroxynitrite: a potent oxidizing and nitrating agent. Indian J. Exp. Biol. 44: 436-447.
24 Cho, B. S., Lee, J. J. and Lee, M. Y. (2007) Effects of ethanol extracts from Petasites japonicus S. et Z. Max. on hepatic antioxidative systems in alcohol treated rats. J. Korean Soc. Food Sci. Nutr. 36: 298-304.   DOI
25 Middleton, E. J. and Kandaswami, C. (1994) Potential health promoting properties of citrus flavonoids. Food Technol. 48: 115-119.
26 Lee, C. H., Yi, H. S., Kim, J. E., Heo, S. K., Cha, C. M., Won, C. W. and Park, S. D. (2009) Anti-oxidative and anti-inflammaroty effect of fractionated extracts of Smilacis glabrae rhizome in human umbilical vein endothelial cell. Kor. J. Herbology 24: 39-50.
27 Wang, Q., Lee, A. Y., Choi, J. M., Lee, D. G., Kim, H. Y., Lee, S. H. and Cho, E. J. (2014) In vitro radical scavenging effect and neuroprotective activity from oxidative stress of Petasites japonicus. Kor. J. Pharmacogn. 45: 147-153.
28 Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13: 76-86.   DOI
29 Tanito, M., Agbaga, M. P. and Anderson, R. E. (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic. Biol. Med. 42: 1838-1850.   DOI
30 McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J. D. (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278: 21592-21600.   DOI
31 Maines, M. D. (1988) Heme oxygenase: function, multiplicity, regulatory mechanism, and clinical applications. FASEB J. 2: 2557-2568.   DOI
32 Sakurai, A., Nishimoto, M., Himeno, S., Imura, N., Tsujimoto, M., Kunimoto, M. and Hara, S. (2005) Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J. Cell. Physiol. 203: 529-537.   DOI
33 Mustacich, D. and Powis, G. (2000) Thioredoxin reductase. Biochem. J. 346: 1-8.   DOI
34 Matsuura, H., Amano, M., Kawabata, J. and Mizutani, J. (2002) Isolation and measurement of quercetin glucosides in flower buds of Japanese butterbur (Petasites japonicus subsp. gigantea Kitam.). Biosci. Biotechnol. Biochem. 66: 1571-1575.   DOI