• Title/Summary/Keyword: nuclear SSU and ITS rDNA

Search Result 10, Processing Time 0.021 seconds

Morphology and phylogenetic relationships of two Antarctic strains within the genera Carolibrandtia and Chlorella (Chlorellaceae, Trebouxiophyceae)

  • Hyunsik Chae;Eun Jae Kim;Han Soon Kim;Han-Gu Choi;Sanghee Kim;Ji Hee Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.241-252
    • /
    • 2023
  • The genera Carolibrandtia and Chlorella have been described as small green algae with spherical cell shapes that inhabit various environments. Species of these genera are often difficult to identify because of their simple morphology and high phenotypic plasticity. We investigated two small coccoid strains from Antarctica based on morphology, molecular phylogeny by two alignment methods which have been applied to previous phylogenetic studies of the genus Chlorella, and comparison of the secondary structures of nuclear small subunit (SSU) and internal transcribed spacer (ITS) rDNA sequences. Light microscopy of two strains revealed spherical cells containing chloroplasts with pyrenoids, and the morphological characteristics of the strains were nearly identical to those of other Chlorella species. However, based on the phylogenetic analyses of nuclear SSU and ITS rDNA sequences, it was determined that the Antarctic microalgal strains belonged to two genera, as the Chlorella and Carolibrandtia. In addition, the secondary structures of the SSU and ITS2 sequences were analyzed to detect compensatory base changes (CBCs) that were used to identify and describe the two strains. A unique CBC in the SSU rDNA gene was decisive for distinguishing strain CCAP 211/45. The ITS2 rDNA sequences for each strain were compared to those obtained previously from other closely related species. Following the comparison of morphological and molecular characteristics, we propose KSF0092 as a new species, Chlorella terrestris sp. nov., and the reassignment of the strain Chlorella antarctica CCAP 211/45 into Carolibrandtia antarctica comb. nov.

Two Freshwater Cryptomonads New to Korea: Cryptomonas marssonii and C. pyrenoidifera

  • Kim, Jee-Hwan;Boo , Sung-Min;Shin, Woong-Ghi
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.147-152
    • /
    • 2007
  • We described two brownish freshwater Cryptomonas species, C. marssonii Skuja and C. pyrenoidifera Geitler as first records in Korea. The identification was based on light microscopy, scanning electron microscopy, and nuclear SSU rDNA sequences analysis. Cryptomonas marssonii is characterized by its sigmoid shape with a sharply pointed and dorsally curved antapex, dorso-ventrally flattened cell, two lateral plastids without pyrenoid, and its dimension of 18-25 μm in length and 8-13 μm in width. Cryptomonas pyrenoidifera is characterized by ovoid to elliptical shape with a partially twisted or rounded antapex, dorso-ventrally biconvex cell, lateral plastids with two pyrenoids, and the dimensions of 15-22 μm in length and 10-14 μm in width. Nuclear SSU rDNA sequences between C. marssonii WCK01 from Korea and CCAC0086 from Gernmay, and between C. pyrenoidifera WCK02 from Korea and CCMP152 from Australia were identical, respectively.

Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea

  • Jeong, Hae Jin;Jang, Se Hyeon;Moestrup, Ojvind;Kang, Nam Seon;Lee, Sung Yeon;Potvin, Eric;Noh, Jae Hoon
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.75-99
    • /
    • 2014
  • A small dinoflagellate, Ansanella granifera gen. et sp. nov., was isolated from estuarine and marine waters, and examined by light microscopy, scanning electron microscopy, and transmission electron microscopy. In addition, the identity of the sequences (3,663-bp product) of the small subunit (SSU), internal transcribed spacer (ITS) region (ITS1, 5.8S, ITS2), and D1-D3 large subunit (LSU) rDNA were determined. This newly isolated, thin-walled dinoflagellate has a type E eyespot and a single elongated apical vesicle, and it is closely related to species belonging to the family Suessiaceae. A. granifera has 10-14 horizontal rows of amphiesmal vesicles, comparable to Biecheleria spp. and Biecheleriopsis adriatica, but greater in number than in other species of the family Suessiaceae. Unlike Biecheleria spp. and B. adriatica, A. granifera has grana-like thylakoids. Further, A. granifera lacks a nuclear fibrous connective, which is present in B. adriatica. B. adriatica and A. granifera also show a morphological difference in the shape of the margin of the cingulum. In A. granifera, the cingular margin formed a zigzag line, and in B. adriatica a straight line, especially on the dorsal side of the cell. The episome is conical with a round apex, whereas the hyposome is trapezoidal. Cells growing photosynthetically are $10.0-15.0{\mu}m$ long and $8.5-12.4{\mu}m$ wide. The cingulum is descending, the two ends displaced about its own width. Cells of A. granifera contain 5-8 peripheral chloroplasts, stalked pyrenoids, and a pusule system, but lack nuclear envelope chambers, a nuclear fibrous connective, lamellar body, rhizocysts, and a peduncle. The main accessory pigment is peridinin. The SSU, ITS regions, and D1-D3 LSU rDNA sequences differ by 1.2-7.4%, >8.8%, and >2.5%, respectively, from those of the other known genera in the order Suessiales. Moreover, the SSU rDNA sequence differed by 1-2% from that of the three most closely related species, Polarella glacialis, Pelagodinium bei, and Protodinium simplex. In addition, the ITS1-5.8S-ITS2 rDNA sequence differed by 16-19% from that of the three most closely related species, Gymnodinium corii, Pr. simplex, and Pel. bei, and the LSU rDNA sequence differed by 3-4% from that of the three most closely related species, Protodinium sp. CCMP419, B. adriatica, and Gymnodinium sp. CCMP425. A. granifera had a 51-base pair fragment in domain D2 of the large subunit of ribosomal DNA, which is absent in the genus Biecheleria. In the phylogenetic tree based on the SSU and LSU sequences, A. granifera is located in the large clade of the family Suessiaceae, but it forms an independent clade.

Emendation of Rhodomonas marina (Cryptophyceae): insights from morphology, molecular phylogeny and water-soluble pigment in an Arctic isolate

  • Niels Daugbjerg;Cecilie B. Devantier
    • ALGAE
    • /
    • v.39 no.2
    • /
    • pp.75-96
    • /
    • 2024
  • Rhodomonas (Cryptophyceae) and species assigned to this genus have undergone numerous taxonomic revisions. This also applies to R. marina studied here as it was originally assigned as a species of Cryptomonas and later considered a variation of R. baltica, the type species. Despite being described more than 130 years ago, R. marina still lacks a comprehensive characterization. Light and electron microscopy were employed to delineate a strain from western Greenland. The living cells were 18 ㎛ long and 9 ㎛ wide, elliptical in shape with a pointed to rounded posterior and truncated anterior in lateral view. Two sub-equal flagella emerged from a vestibulum, where also a furrow extended. In transmission electron microscopy, the furrow was associated with a tubular gullet and the pyrenoid embedded in a deeply lobed chloroplast. The chloroplast contained DNA in perforations and was surrounded by starch grains. A tubular nucleomorph was enclosed within the pyrenoid matrix. In scanning electron microscopy, the inner periplast consisted of rectangular plates with rounded edges and posteriorly these were replaced by a sheet-like structure. The water-soluble pigment was Crypto-Phycoerythrin type I (Cr-PE 545). A phylogenetic inference based on SSU rDNA confirmed the identity of strain S18 as a species of Rhodomonas as it clustered with congeners but also Rhinomonas, Storeatula, and Pyrenomonas. These genera formed a monophyletic clade separated from a diverse assemblage of other cryptophyte genera. To further explore the phylogeny of R. marina a concatenated phylogenetic analysis based on the SSU rDNA-ITS1-5.8S rDNA-ITS2-LSU rDNA region was performed but included only closely related species. The secondary structure of nuclear internal transcribed spacer 2 was predicted and compared to similar structures in related species. Using morphological and molecular signatures as diagnostic features the description of R. marina was emended.

DNA Sequences and Identification of Porphyra Cultivated by Natural Seeding on the Southwest Coast of Korea (한국 남서해안 자연채묘 양식 김의 DNA 염기서열과 종 동정)

  • Hwang, Mi-Sook;Kim, Sun-Mi;Ha, Dong-Soo;Baek, Jae-Min;Kim, Hyeung-Seop;Choi, Han-Gu
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.183-196
    • /
    • 2005
  • Nuclear SSU and ITS1 rDNA and plastid rbcL sequences were determined to identify the seven samples of Porphyra cultivated by means of natural seeding on the southwest coast of Korea and analyzed to access the phylogenetic relationships of them with the natural populations of P. tenera and P. yezoensis from Korea and Japan. SSU, rbcL and ITS1 data from 18, 21 and 31 samples, respectively, including previously published sequences were investigated in the study. Results from our individual and combined data indicated that the seven samples were all P. yezoensis and the entities except one from Muan 2 aquafarm strongly grouped together with the natural populations of P. yezoensis from the south and the west coast of Korea. The sample from Muan 2 seems to be derived from a strain of P. yezoensis introduced from Japan by Porphyra farmers, based on DNA sequence data.

Nuclear SSU and Plastid rbcL Genes and Ultrastructure of Mallomonas caudata (Synurophyceae) from Korea (한국산 Mallomonas caudata (Synurophyceae)의 미세구조, 핵 SSU 그리고 색소체 rbcL 유전자)

  • Kim, Han-Soon;Shin, Woong-Ghi;Boo, Sung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.387-394
    • /
    • 2007
  • Despite geographic barriers such as oceans, many freshwater algal species inhabit different continents of the world. A unicellular freshwater alga, Mallomonas caudeata, commonly occurring in Asia, Europe, and America of the northern Hemisphere, is closely related to human life such as monitoring blooms and defecting changes in climates. In order to demonstrate its occurrence in Korea and to infer its phylogeny, we sequenced nuclear SSU and plastid rbcL genes from isolates collected in six different reservoirs. We have also investigated transmission electron microscopy of the Korean isolates. SSU sequences of the species from Korea and USA were almost identical, having pair-wise divergences of 0.06% in SSU and 0.45% in rbcL. Both gene trees revealed that the species was clearly separated from other species of the genus, while the genus was not monophyletic. Rhizoplasts are composed of microfibrils organised in striated rootlets attached to the multilayered plate of basal bodies and arranged on the surface of the nucleus at their distal ends. The rhizoplast constitutes a basal body-nucleus connector similar to that of typical Synurophyceas. The results that Mallomonas was not supported by both SSU and rbeL data sets require a further study with additional taxon sampling.

Genetic Diversity and Pathogenicity of Cylindrocarpon destructans Isolates Obtained from Korean Panax ginseng

  • Song, Jeong Young;Seo, Mun Won;Kim, Sun Ick;Nam, Myeong Hyeon;Lim, Hyoun Sub;Kim, Hong Gi
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • We analyzed the genetic diversity of Cylindrocarpon destructans isolates obtained from Korean ginseng (i.e., Panax ginseng) roots by performing virulence tests and nuclear ribosomal gene internal transcribed spacer (ITS) and mitochondrial small subunit (mt SSU) rDNA sequence analysis. The phylogenetic relationship analysis performed using ITS DNA sequences and isolates from other hosts helped confirm that all the Korean C. destructans isolates belonged to Nectria/Neonectria radicicola complex. The results of in vivo and ex vivo virulence tests showed that the C. destructans isolates could be divided into two groups according to their distinctive difference in virulence and the genetic diversity. The highly virulent Korean isolates in pathogenicity group II (PG II), together with foreign isolates from P. ginseng and P. quinquefolius, formed a single group. The weakly virulent isolates in pathogenicity group I, together with the foreign isolates from other host plants, formed another group and exhibited a greater genetic diversity than the isolates of PG II, as confirmed by the mt SSU rDNA sequence analysis. In addition, as the weakly virulent Korean isolates were genetically very similar to the foreign isolates from other hosts, they were likely to originate from hosts other than the ginseng plants.

Phylogeny of Phellinus and Related Genera Inferred from Combined Data of ITS and Mitochondrial SSU rDNA Sequences

  • JEONG WON JIN;LIM YOUNG WOON;LEE JIN SUNG;JUNG HACK SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1028-1038
    • /
    • 2005
  • To elucidate phylogenetic relationships of Phellinus and its related genera, nuclear internal transcribed spacer and mitochondrial small subunit ribosomal DNA sequences from 65 strains were determined and compared. The combined dataset of two sequences increased informative characters and led to the production of trees with higher levels of resolution. Phylogenetic analysis of the combined dataset revealed thirteen evolutionary lineages and several unresolved species that were together subdivided into two large clusters consisting of oligonucleate species and binucleate species. These results coincided with previous cytological, morphological, and molecular studies. It is newly recognized that the Phellinus linteus complex forms a sister clade to Inonotus, and that Fulvifomes is somehow related to Inocutis. The Phellinus linteus complex of dimitic perennial taxa made an independent clade from Inonotus and suggested that hyphal miticity and fruitbody permanence had enough phylogenetic significance to keep the complex within the traditional genus Phellinus. Taxa lacking setae were clustered into Fulvifomes, Phylloporia, Inocutis, and Fomitiporia, and the first three were closely related sister groups, but Fomitiporia was a genus distantly related to them. Several taxa with branched setae were shown among distantly related genera. Molecular evidence indicated that the ancestral nuclear type could be a binucleate feature, and that there might be parallel gains of branched setae and parallel losses of setae in the Hymenochaetales.